
Algorithm 1 Pick-k
1: input: set size k, universe of items Y , α, β, f(.), g(.)
2: Y ← {φ}, n← k, α′ ← α, β′ ← β
3: while n > 0 do
4: M ←

n
arg maxs

α′/n+f(s)
β′/n+g(s)

o
(s ∈ Y \ Y)

5: If |M | > n, then keep any n elements in M and throw away
the rest

6: Y ← Y ∪M
7: α′ ← α′ +

P
m∈M f(m)

8: β′ ← β′ +
P

m∈M g(m)
9: n← n− |M |

10: end while
11: output: picked elements Y ⊆ Y

We want to optimize the following objective (the X subscripts
have been dropped in the interest of clarity):

h(Y) =
α +

P
i f(yi)

β +
P

i g(yi)
, (1)

We want to prove that Algorithm 1 picks the optimal solution Y ∗ =
arg maxY h(Y).

Proof of Optimality. For ease of exposition, assume that there are
no ties in step 4 and each iteration adds only one element to Y (the
proof can be easily extended to cover that case of multiple additions
per iteration).

The algorithm maximizes Equation 1 by solving a sequence of
sub-problems. Suppose that the set of elements Y ∗

(k−n) = {y∗1 , . . . , y∗k−n}
is known to belong to Y ∗. Now, for any set W ⊆ Y \ Y ∗

(k−n) such
that W has exactly n elements, we use Equation 1 to get:

h(Y ∗
(k−n) ∪W) =

α +
P

y∈Y ∗
(k−n)

f(y) +
P

w∈W f(w)

β +
P

y∈Y ∗
(k−n)

g(y) +
P

w∈W g(w)
(2)

Let W ∗ = arg maxW h(Y ∗
(k−n) ∪ W). Now, we can define the

following subproblem:

Problem 1’: Given the 4-tuple (Y ∗
(k−n), α, β, n), find any one ele-

ment w∗ ∈W ∗.

Next, we relate the solution of the sub-problem to the optimal
solution Y ∗.

LEMMA 1. w∗ ∈W ∗ ⇒ w∗ ∈ Y ∗

PROOF. Clearly, Y ∗ = Y ∗
(k−n)∪W ∗ in order to maximize Equa-

tion 1. Since w∗ ∈W ∗, we must have w∗ ∈ Y ∗.

LEMMA 2. Problem 1′ with the 4-tuple (Y ∗
(k−n), α, β, n) is equiv-

alent to the 4-tuple„
{φ}, α +

P
y∈Y ∗

(k−n)
f(y), β +

P
y∈Y ∗

(k−n)
g(y), n

«
.

PROOF. This follows from the form of Equation 2.

The optimality of Algorithm 1 can now be proved in two stages.
First, assuming the correctness of our solution to each sub-problem,
we show that the sequence of sub-problems generated by steps 6-9
of our algorithm is correct. Second, we show that each sub-problem
is solved correctly (step 4).

THEOREM 1. Assuming that step 4 of Algorithm 1 correctly solves
the sub-problem ({φ}, α′, β′, n), the algorithm returns the optimal
result Y ∗.

PROOF. We show that each iteration adds one new element of
Y ∗ to Y ; as there are k iterations and |Y ∗| = k, the resulting Y
must equal Y ∗.

The proof is by induction on the number of iterations k − n. In
the first iteration (k−n = 0), the sub-problem being solved by step
4 is given by ({φ}, α, β, k), whose solution is a member of Y ∗ by
Lemma 1.

Suppose the first k−n iterations are correct, and yield Y ∗
(k−n) ⊂

Y ∗. By repeated applications of steps 6-9, we must have α′ = α +P
y∈Y ∗

(k−n)
f(y), and β′ = β +

P
y∈Y ∗

(k−n)
g(y). Thus, the sub-

problem for the next iteration, viz. ({φ}, α′, β′, n), is equivalent
to (Y ∗

(k−n), α, β, n) by Lemma 2. Once again, solving this will
yield another element of Y ∗, by Lemma 1. Hence, at the end of
k − n + 1 iterations, the set Y contains k − n + 1 elements of Y ∗;
Y = Y ∗

(k−n+1), as desired. This completes the proof.

Next, we prove the correctness of step 4. Consider one partic-
ular iteration, where n elements are yet to be added. For every
y ∈ Y , define num(y) = α′/n + f(y), den(y) = β′/n + g(y),
and imp(y) = num(y)/den(y). We call these the numerator, the
denominator, and the importance of element y respectively. We re-
use this notation for sets S ⊆ Y as well: num(S) =

P
y∈S f(y),

den(S) =
P

y∈S g(y), and imp(S) = num(S)/den(S). Next, we
prove an inequality between imp(S) of any set S and its members,
which uses the following fact:

a

b
>

c

d
⇒ a

b
>

a + c

b + d
>

c

d
(b, d > 0) (3)

THEOREM 2. Let S = (s1, . . . , sn) be an ordered set of size
n ≥ 2 such that imp(s1) < imp(s2) < . . . < imp(sn). Then,
imp(s1) < imp(S) < imp(sn).

PROOF. We prove imp(s1) < imp(S); the other case is similar.
The proof is by induction on n.

When n = 2, imp(S) = num(s1)+num(s2)

den(s1)+den(s2)
> num(s1)

den(s1)
=

imp(s1), using Fact 3.
Suppose the proposition is true for all sets of size n − 1. Then,

for set S of size n, consider the subset S′ = S \ {sn} of size
n − 1. We have: imp(S) = num(S)

den(S)
= num(S′)+num(sn)

den(S′)+den(sn)
. Now,

num(S′)

den(S′)
= imp(S′) > imp(s1), by assumption. Also, num(sn)

den(sn)
=

imp(sn) > imp(s1), by the ordering of set S. From these, it is
easily seen that imp(S) > imp(s1).

Let W ∗ = {w∗
1 , . . . , w∗

n} be the optimal set of n elements that
are yet to be selected in accordance with Equation 2, i.e., Y ∗ =
Y ∗

(k−n)∪W ∗. Without loss of generality, let imp(w∗
1) < imp(w∗

2) <

. . . < imp(w∗
n)1. Now, note that step 4 of Algorithm 1 picks the el-

ement with the highest importance: s∗ = arg maxs∈Y\Y imp(s).

THEOREM 3. Step 4 of Algorithm 1 correctly solves the sub-
problem ({φ}, α′, β′, n), i.e., the element selected in step 4 belongs
to the optimal solution: s∗ ∈W ∗.

PROOF. We have:

h(Y ∗) = h(Y ∗
(k−n) ∪W ∗)

=
α′ +

Pn
i=1 f(w∗

i)

β′ +
Pn

i=1 g(w∗
i)

=

Pn
i=1 (α′/n + f(w∗

i))Pn
i=1 (β′/n + g(w∗

i))

= imp(W ∗) (4)
1Recall that ties are not being considered here, but can be easily
folded into the proof.

This establishes the relationship between the function h(.) that we
want to optimize, and the function imp(S) that we could express
using the importances of individual elements imp(s) where s ∈ S.
This only works because the size of the set is n, and we have been
using α′/n and β′/n in the imp(.) function.

Now, suppose s∗ /∈ W ∗. Let W ′ = W ∗ \ w∗
1 , and Z = W ′ ∪

{s∗} = {w∗
2 , . . . , w∗

n, s∗}. Note that Z is again a set of n elements,
and hence,

h(Y ∗
(k−n) ∪ Z) = imp(Z) =

num(W ′) + num(s∗)

den(W ′) + den(s∗)
.

Now,

num(W ′)

den(W ′)
= imp(W ′)

< imp(w∗
n) from Thm 2

< imp(s∗) by definition of s∗ (5)

Similarly,

num(W ′)

den(W ′)
= imp(W ′)

> imp(w∗
2) from Thm 2

> imp(w∗
1) (6)

Thus, we have:

h(Y ∗) = imp(W ∗) =
num(w∗

1) + num(W ′)

den(w∗
1) + den(W ′)

<
num(W ′)

den(W ′)
,

where we use Equation 6 and Fact 3. Similarly,

h(Y ∗
(k−n) ∪ Z) = imp(Z) =

num(W ′) + num(s∗)

den(W ′) + den(s∗)
>

num(W ′)

den(W ′)
,

using Equation 5 and Fact 3. Hence,

h(Y ∗) <
num(W ′)

den(W ′)
< h(Y ∗

(k−n) ∪ Z),

implying that Y ∗ is not the optimal solution, which is a contradic-
tion. Hence, s∗ ∈W ∗.

