```
Algorithm 1 Pick- \(k\)
    input: set size \(k\), universe of items \(\mathcal{Y}, \alpha, \beta, f(),. g(\).
    \(Y \leftarrow\{\phi\}, n \leftarrow k, \alpha^{\prime} \leftarrow \alpha, \beta^{\prime} \leftarrow \beta\)
    while \(n>0\) do
        \(M \leftarrow\left\{\arg \max _{s} \frac{\alpha^{\prime} / n+f(s)}{\beta^{\prime} / n+g(s)}\right\} \quad(s \in \mathcal{Y} \backslash Y)\)
        If \(|M|>n\), then keep any \(n\) elements in \(M\) and throw away
        the rest
        \(Y \leftarrow Y \cup M\)
        \(\alpha^{\prime} \leftarrow \alpha^{\prime}+\sum_{m \in M} f(m)\)
        \(\beta^{\prime} \leftarrow \beta^{\prime}+\sum_{m \in M} g(m)\)
        \(n \leftarrow n-|M|\)
    end while
    output: picked elements \(Y \subseteq \mathcal{Y}\)
```

We want to optimize the following objective (the X subscripts have been dropped in the interest of clarity):

$$
\begin{equation*}
h(Y)=\frac{\alpha+\sum_{i} f\left(y_{i}\right)}{\beta+\sum_{i} g\left(y_{i}\right)}, \tag{1}
\end{equation*}
$$

We want to prove that Algorithm 1 picks the optimal solution $Y^{*}=$ $\arg \max _{Y} h(Y)$.
Proof of Optimality. For ease of exposition, assume that there are no ties in step 4 and each iteration adds only one element to Y (the proof can be easily extended to cover that case of multiple additions per iteration).
The algorithm maximizes Equation 1 by solving a sequence of sub-problems. Suppose that the set of elements $Y_{(k-n)}^{*}=\left\{y_{1}^{*}, \ldots, y_{k-}^{*}\right.$ is known to belong to Y^{*}. Now, for any set $W \subseteq \mathcal{Y} \backslash Y_{(k-n)}^{*}$ such that W has exactly n elements, we use Equation 1 to get:

$$
\begin{equation*}
h\left(Y_{(k-n)}^{*} \cup W\right)=\frac{\alpha+\sum_{y \in Y_{(k-n)}^{*}} f(y)+\sum_{w \in W} f(w)}{\beta+\sum_{y \in Y_{(k-n)}^{*}} g(y)+\sum_{w \in W} g(w)} \tag{2}
\end{equation*}
$$

Let $W^{*}=\arg \max _{W} h\left(Y_{(k-n)}^{*} \cup W\right)$. Now, we can define the following subproblem:
Problem 1': Given the 4-tuple ($Y_{(k-n)}^{*}, \alpha, \beta, n$), find any one element $w^{*} \in W^{*}$.

Next, we relate the solution of the sub-problem to the optimal solution Y^{*}.

Lemma 1. $w^{*} \in W^{*} \Rightarrow w^{*} \in Y^{*}$
Proof. Clearly, $Y^{*}=Y_{(k-n)}^{*} \cup W^{*}$ in order to maximize Equation 1. Since $w^{*} \in W^{*}$, we must have $w^{*} \in Y^{*}$.

Lemma 2. Problem 1^{\prime} with the 4-tuple $\left(Y_{(k-n)}^{*}, \alpha, \beta, n\right)$ is equivalent to the 4-tuple
$\left(\{\phi\}, \alpha+\sum_{y \in Y_{(k-n)}^{*}} f(y), \beta+\sum_{y \in Y_{(k-n)}^{*}} g(y), n\right)$.
Proof. This follows from the form of Equation 2.
The optimality of Algorithm 1 can now be proved in two stages. First, assuming the correctness of our solution to each sub-problem, we show that the sequence of sub-problems generated by steps 6-9 of our algorithm is correct. Second, we show that each sub-problem is solved correctly (step 4).

THEOREM 1. Assuming that step 4 of Algorithm 1 correctly solves the sub-problem $\left(\{\phi\}, \alpha^{\prime}, \beta^{\prime}, n\right)$, the algorithm returns the optimal result Y^{*}.

Proof. We show that each iteration adds one new element of Y^{*} to Y; as there are k iterations and $\left|Y^{*}\right|=k$, the resulting Y must equal Y^{*}.

The proof is by induction on the number of iterations $k-n$. In the first iteration $(k-n=0)$, the sub-problem being solved by step 4 is given by ($\{\phi\}, \alpha, \beta, k$), whose solution is a member of Y^{*} by Lemma 1.

Suppose the first $k-n$ iterations are correct, and yield $Y_{(k-n)}^{*} \subset$ Y^{*}. By repeated applications of steps $6-9$, we must have $\alpha^{\prime}=\alpha+$ $\sum_{y \in Y_{(k-n)}^{*}} f(y)$, and $\beta^{\prime}=\beta+\sum_{y \in Y_{(k-n)}^{*}} g(y)$. Thus, the subproblem for the next iteration, viz. $\left(\{\phi\}, \alpha^{\prime}, \beta^{\prime}, n\right)$, is equivalent to $\left(Y_{(k-n)}^{*}, \alpha, \beta, n\right)$ by Lemma 2. Once again, solving this will yield another element of Y^{*}, by Lemma 1. Hence, at the end of $k-n+1$ iterations, the set Y contains $k-n+1$ elements of Y^{*}; $Y=Y_{(k-n+1)}^{*}$, as desired. This completes the proof.

Next, we prove the correctness of step 4 . Consider one particular iteration, where n elements are yet to be added. For every $y \in \mathcal{Y}$, define $\operatorname{num}(y)=\alpha^{\prime} / n+f(y), \operatorname{den}(y)=\beta^{\prime} / n+g(y)$, and $\operatorname{imp}(y)=\operatorname{num}(y) / \operatorname{den}(y)$. We call these the numerator, the denominator, and the importance of element y respectively. We reuse this notation for sets $S \subseteq \mathcal{Y}$ as well: $\operatorname{num}(S)=\sum_{y \in S} f(y)$, $\operatorname{den}(S)=\sum_{y \in S} g(y), \operatorname{and} \operatorname{imp}(S)=\operatorname{num}(S) / \operatorname{den}(S)$. Next, we prove an inequality between $\operatorname{imp}(S)$ of any set S and its members, which uses the following fact:

$$
\begin{equation*}
\frac{a}{b}>\frac{c}{d} \Rightarrow \frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d} \quad(b, d>0) \tag{3}
\end{equation*}
$$

Theorem 2. Let $S=\left(s_{1}, \ldots, s_{n}\right)$ be an ordered set of size $\eta \geq 2$ such that $\operatorname{imp}\left(s_{1}\right)<\operatorname{imp}\left(s_{2}\right)<\ldots<\operatorname{imp}\left(s_{n}\right)$. Then, $\operatorname{imp}\left(s_{1}\right)<\operatorname{imp}(S)<\operatorname{imp}\left(s_{n}\right)$.

Proof. We prove $\operatorname{imp}\left(s_{1}\right)<\operatorname{imp}(S)$; the other case is similar. The proof is by induction on n.

When $n=2, \operatorname{imp}(S)=\frac{\operatorname{num}\left(s_{1}\right)+\operatorname{num}\left(s_{2}\right)}{\operatorname{den}\left(s_{1}\right)+\operatorname{den}\left(s_{2}\right)}>\frac{\operatorname{num}\left(s_{1}\right)}{\operatorname{den}\left(s_{1}\right)}=$ $\operatorname{imp}\left(s_{1}\right)$, using Fact 3.

Suppose the proposition is true for all sets of size $n-1$. Then, for set S of size n, consider the subset $S^{\prime}=S \backslash\left\{s_{n}\right\}$ of size $n-1$. We have: $\operatorname{imp}(S)=\frac{\operatorname{num}(S)}{\operatorname{den}(S)}=\frac{\operatorname{num}\left(S^{\prime}\right)+\operatorname{num}\left(s_{n}\right)}{\operatorname{den}\left(S^{\prime}\right)+\operatorname{den}\left(s_{n}\right)}$. Now, $\frac{\operatorname{num}\left(S^{\prime}\right)}{\operatorname{den}\left(S^{\prime}\right)}=\operatorname{imp}\left(S^{\prime}\right)>\operatorname{imp}\left(s_{1}\right)$, by assumption. Also, $\frac{\operatorname{num}\left(s_{n}\right)}{\operatorname{den}\left(s_{n}\right)}=$ $\operatorname{imp}\left(s_{n}\right)>\operatorname{imp}\left(s_{1}\right)$, by the ordering of set S. From these, it is easily seen that $\operatorname{imp}(S)>\operatorname{imp}\left(s_{1}\right)$.

Let $W^{*}=\left\{w_{1}^{*}, \ldots, w_{n}^{*}\right\}$ be the optimal set of n elements that are yet to be selected in accordance with Equation 2, i.e., $Y^{*}=$ $Y_{(k-n)}^{*} \cup W^{*}$. Without loss of generality, let $\operatorname{imp}\left(w_{1}^{*}\right)<\operatorname{imp}\left(w_{2}^{*}\right)<$ $\ldots<\operatorname{imp}\left(w_{n}^{*}\right)^{1}$. Now, note that step 4 of Algorithm 1 picks the element with the highest importance: $s^{*}=\arg \max _{s \in \mathcal{Y} \backslash Y} \operatorname{imp}(s)$.

Theorem 3. Step 4 of Algorithm 1 correctly solves the subproblem $\left(\{\phi\}, \alpha^{\prime}, \beta^{\prime}, n\right)$, i.e., the element selected in step 4 belongs to the optimal solution: $s^{*} \in W^{*}$.

Proof. We have:

$$
\begin{align*}
h\left(Y^{*}\right) & =h\left(Y_{(k-n)}^{*} \cup W^{*}\right) \\
& =\frac{\alpha^{\prime}+\sum_{i=1}^{n} f\left(w_{i}^{*}\right)}{\beta^{\prime}+\sum_{i=1}^{n} g\left(w_{i}^{*}\right)} \\
& =\frac{\sum_{i=1}^{n}\left(\alpha^{\prime} / n+f\left(w_{i}^{*}\right)\right)}{\sum_{i=1}^{n}\left(\beta^{\prime} / n+g\left(w_{i}^{*}\right)\right)} \\
& =\operatorname{imp}\left(W^{*}\right) \tag{4}
\end{align*}
$$

[^0]This establishes the relationship between the function $h($.$) that we$ want to optimize, and the function $\operatorname{imp}(S)$ that we could express using the importances of individual elements $\operatorname{imp}(s)$ where $s \in S$. This only works because the size of the set is n, and we have been using α^{\prime} / n and β^{\prime} / n in the $\operatorname{imp}($.$) function.$

Now, suppose $s^{*} \notin W^{*}$. Let $W^{\prime}=W^{*} \backslash w_{1}^{*}$, and $Z=W^{\prime} \cup$ $\left\{s^{*}\right\}=\left\{w_{2}^{*}, \ldots, w_{n}^{*}, s^{*}\right\}$. Note that Z is again a set of n elements, and hence,

$$
h\left(Y_{(k-n)}^{*} \cup Z\right)=\operatorname{imp}(Z)=\frac{\operatorname{num}\left(W^{\prime}\right)+\operatorname{num}\left(s^{*}\right)}{\operatorname{den}\left(W^{\prime}\right)+\operatorname{den}\left(s^{*}\right)}
$$

Now,

$$
\begin{align*}
\frac{\operatorname{num}\left(W^{\prime}\right)}{\operatorname{den}\left(W^{\prime}\right)} & =\operatorname{imp}\left(W^{\prime}\right) \\
& <\operatorname{imp}\left(w_{n}^{*}\right) \quad \text { from Thm } 2 \\
& <\operatorname{imp}\left(s^{*}\right) \quad \text { by definition of } s^{*} \tag{5}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\frac{\operatorname{num}\left(W^{\prime}\right)}{\operatorname{den}\left(W^{\prime}\right)} & =\operatorname{imp}\left(W^{\prime}\right) \\
& >\operatorname{imp}\left(w_{2}^{*}\right) \quad \text { from Thm } 2 \\
& >\operatorname{imp}\left(w_{1}^{*}\right) \tag{6}
\end{align*}
$$

Thus, we have:

$$
h\left(Y^{*}\right)=\operatorname{imp}\left(W^{*}\right)=\frac{\operatorname{num}\left(w_{1}^{*}\right)+\operatorname{num}\left(W^{\prime}\right)}{\operatorname{den}\left(w_{1}^{*}\right)+\operatorname{den}\left(W^{\prime}\right)}<\frac{\operatorname{num}\left(W^{\prime}\right)}{\operatorname{den}\left(W^{\prime}\right)}
$$

where we use Equation 6 and Fact 3. Similarly,
$h\left(Y_{(k-n)}^{*} \cup Z\right)=\operatorname{imp}(Z)=\frac{\operatorname{num}\left(W^{\prime}\right)+\operatorname{num}\left(s^{*}\right)}{\operatorname{den}\left(W^{\prime}\right)+\operatorname{den}\left(s^{*}\right)}>\frac{\operatorname{num}\left(W^{\prime}\right)}{\operatorname{den}\left(W^{\prime}\right)}$, using Equation 5 and Fact 3. Hence,

$$
h\left(Y^{*}\right)<\frac{\operatorname{num}\left(W^{\prime}\right)}{\operatorname{den}\left(W^{\prime}\right)}<h\left(Y_{(k-n)}^{*} \cup Z\right)
$$

implying that Y^{*} is not the optimal solution, which is a contradiction. Hence, $s^{*} \in W^{*}$.

[^0]: ${ }^{1}$ Recall that ties are not being considered here, but can be easily folded into the proof.

