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ABSTRACT

Recommending interesting content to engage users is important for
web portals (e.g. AOL, MSN, Yahoo!, and many others). Exist-
ing approaches typically recommend articles to optimize for a sin-
gle objective, i.e., number of clicks. However a click is only the
starting point of a user’s journey and subsequent downstream util-
ities such as time-spent and revenue are important. In this paper,
we call the problem of recommending links to jointly optimize for
clicks and post-click downstream utilities click shaping. We pro-
pose a multi-objective programming approach in which multiple
objectives are modeled in a constrained optimization framework.
Such a formulation can naturally incorporate various application-
driven requirements. We study several variants that model different
requirements as constraints and discuss some of the subtleties in-
volved. We conduct our experiments on a large dataset from a real
system by using a newly proposed unbiased evaluation methodol-
ogy [17]. Through extensive experiments we quantify the tradeoff
between different objectives under various constraints. Our experi-
mental results show interesting characteristics of different formula-
tions and our findings may provide valuable guidance to the design
of recommendation engines for web portals.
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1. INTRODUCTION

Searching and browsing are two dominant ways to access infor-
mation on the Web. While searching to obtain specific content of
interest is ubiquitous, a significant amount of time is also spent on
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browsing the web for content items that are trendy, interesting and
eclectic. Examples include visits to a sports site like ESPN to find
the latest game updates, browsing the Yahoo! Front Page to read
interesting articles, and so on. Hence, it is important to recommend
interesting content items that delight and engage users.

Online digital content is easy to create and access. This provides
a rich inventory of widely varying quality on the Web, and under-
scores the need to develop algorithmic methods that can prune low
quality content in order to surface the engaging ones. However,
such an approach depends on the metrics that we are interested in
optimizing for. Prior work typically approach this problem by con-
sidering a single metric — the click through rate (CTR) on the rec-
ommended content (e.g., [3, 8] and references therein). While CTR
is a reasonable proxy for content popularity and simple to measure,
such an approach ignores nuances that are involved in measuring
other metrics that are often of interest to website owners. For in-
stance, time-spent on the content page is an important engagement
metric reported by comScore', it is known to be indicative of users’
satisfaction in other scenarios such as search [18, 6]. Furthermore,
website owners may also consider non-engagement metrics like ad-
vertising revenue on the content page. Often, these metrics are in
conflict and optimizing for one may deteriorate some others. For
example, increasing CTR at the expense of total time-spent is per-
haps detrimental and indicative of inferior user experience. Thus,
recommending items to obtain an appropriate tradeoff among sev-
eral metrics is an important research problem.

Consider the Today Module on Yahoo! Front Page in Figure 1 as
a concrete example. Articles are selected from a live content pool
for display on the four module positions. Of the four positions, the
F1 position has the maximum exposure. An article in the content
pool links to a page on some other Yahoo! property like News, Fi-
nance, and Sports. Thus Yahoo! Front Page is like a distribution
channel that routes users to various other Yahoo! pages. Hence a
click on the Today Module is associated with downstream metrics
like time-spent and revenue that accrues post-click. Although op-
timizing total clicks on Today Module can boost overall supply to
different Yahoo! pages, in the presence of significant inter-property
variance in downstream metrics, optimizing for clicks alone may
lead to an undesirable supply distribution. For instance, maximiz-
ing for total clicks may divert more user visits to a low revenue
entertainment site at the expense of a higher revenue finance site.
It is perhaps desirable to change the content serving scheme to ob-
tain a larger fraction of clicks on finance articles without losing too
many clicks overall. This is an example of optimizing for multi-
ple objectives when recommending articles (items) to users. Intu-
itively when we optimize for different objectives, the clicks on the
Today Module that generate visits to different Yahoo! properties

"http://www.comscore.com/
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Figure 1: Today Module on Yahoo! Front Page

are shaped by the recommendation system. Hence we refer to this
problem of recommending items to users to jointly optimize for
clicks and post-click downstream utilities click shaping.

In this paper we propose a multi-objective programming (MOP)
approach [20] for click shaping. The goal of such click shaping in
our application scenarios is to obtain significant improvements in
some downstream metrics (e.g., revenue or time-spent) by forgoing
a small fraction of total click volume that is obtained through the
status quo scheme that maximizes for CTR alone. We formulate the
problem in a constrained optimization framework. Such a formula-
tion can naturally incorporate various application-driven business
requirements. A range of solutions that compute the amount of
click loss incurred to barter a certain improvement in downstream
metrics is given by the multi-objective programming approach. The
solution embraced by the website owner depends on the application
scenario and business strategy. We believe that quantifying such
tradeoffs among multiple competing objectives provide non-trivial
insights to the design of recommendation engines and can help with
better decision-making. Specifically we make the following contri-
butions in this paper:

e We propose click shaping, a novel twist to content recom-
mendation that incorporates both click-throughs and other
downstream metrics in a multi-objective programming (MOP)
framework. In particular, we formulate MOPs of different
flavors that tradeoff total clicks with downstream engage-
ment metrics like time-spent. We show that for recommend-
ing content on large web portal pages that distribute traffic to
several downstream pages, click shaping provides opportu-
nities to effectively tradeoff multiple downstream metrics.

e We introduce variants that ensure “fairness” when routing
visits to different properties (domains). Our fairness objec-
tive ensures that the gains in engagement are shared in a
fair way among different domains. Such constraints are im-
portant in a portal setting where the downstream properties
are heterogeneous. Furthermore, our fairness objective also
helps in normalizing for scale effects whereby engagement
metrics may have sharp differences in scale across differ-
ent properties. Imposing such constraints presents additional
computational challenges. We show several of our constrained
MOPs can be efficiently solved through convex optimization
techniques [21].

e Through replay experiments [17] on logs obtained via a ran-
domized serving scheme on the Today Module, we provide
unbiased performance comparison for different MOPs. Our
data analysis is conducted with two metrics — clicks and time-

spent. Solutions obtained for MOPs under different con-
straints provide interesting insights. We show that significant
gains in downstream engagement is possible by losing small
fraction of clicks. We also show the behavior of click shaping
in the presence of fairness objective. We provide interesting
insights obtained through extensive data analysis.

2. PROBLEM SETUP

For the sake of concreteness, we define our problem in the set-
ting of the Today Module on Yahoo! Front Page in Figure 1. Our
methodology can be easily applied to other multi-objective recom-
mendation settings. Today Module provides users with interesting,
timely, and informative articles every day. At each time point, there
is a candidate pool of live articles created through editorial over-
sight, the pool is frequently refreshed to keep up with timely and
trendy articles. For every visit to the Yahoo! Front Page, articles
selected from the live content pool are recommended on the Today
Module with the goal of optimizing some objective(s).

Notations: Formally, at each epoch ¢, the set of live articles is
denoted by A; = (A1, -, An,). Each article j € A: belongs to
one of K different Yahoo! properties (e.g., News, Finance, Sports,
etc). Supply to a given Yahoo! property is significantly influenced
by the links clicked in the Today Module and provides a good setup
for our study. Let P = {P,..., Px} denote the set of proper-
ties and j € Pj means the landing page of article j belongs to
property Pj.. Users are assumed to be clustered into m segments:
S = {Si,---,Sm}, this is an important assumption for meth-
ods discussed in this paper. We discuss various user segmentation
schemes in Section 5. Let p;;: denote the probability (CTR) that
a user in segment ¢ would click article j when it is displayed in
epoch ¢, and let d;;; denote the time that the user would spend
on the landing property of article j if she clicks the article. Other
downstream utilities (single or multiple) can be easily incorporated
in our framework, we focus only on time-spent in this paper for the
sake of illustration. Note that if the goal is to optimize for a single
objective (maximize clicks or time-spent, but not both), the opti-
mal solution is to recommend the article with the highest p;;; (or
pijt - dij¢) to users in segment i.

Explore/exploit: Content optimization is an explore/exploit prob-
lem. To optimize for any metric, we need to estimate the perfor-
mance of each candidate article in terms of that metric. Without
displaying an article to any user, it is difficult to know the perfor-
mance of that article. Models may be built to predict article perfor-
mance based on article features; however they may be worse than a
simple method that directly computes the metric from online data
(e.g., computing click-through rate using the clicks and views of
the article) [3]. The explore/exploit problem for a single objective
is well studied (e.g., [3]). Developing explore/exploit methods for
multiple objectives that ensure certain notion of optimality is non-
trivial. In this paper we assume some explore/exploit scheme is
running in the system. In particular, we use a simple scheme —
e-greedy, which has been empirically shown to achieve good per-
formance [24]. This scheme works as follows: We serve a small
fraction of randomly selected user visits with articles selected uni-
formly at random from the current content pool in order to collect
data for every article (explore population). For the remaining visits,
we serve the article with the highest estimated CTR if the goal is
to maximize clicks (exploit population). With multiple objectives,
the serving scheme for the exploit population is different from that
of displaying the highest CTR article as we shall see later in this
paper.

Serving scheme: Given multiple objectives and constraints, our
goal is to construct a serving scheme that can be used to serve arti-



cles to users in the exploit population. For each epoch t, a serving
scheme uses information obtained before the epoch to decide an al-
location plan x; = {xj: : ¢ € S,j € Ay}, where x4 is the frac-
tion of visits in user segment 4 to be served with article j in epoch ¢.
Obviously the fractions are non-negative and lie on the article sim-
plex for each user segment, i.e., z;;+ > 0 and Zj xijt = 1. Given
X¢, an incoming user in epoch ¢ is assigned to the appropriate user
segment and an article is served through a multinomial draw from
the article simplex of the segment. Different optimization methods
generate different allocation plans according to different criteria.
For example, the click maximization method would set x;;+¢ to 1
if 7 has the highest estimated CTR among all the articles and 0
for the remaining articles. Soft clustering of users also works with
our formulation and in this case the allocation vector of a user is a
weighted sum of cluster-specific allocation vectors. User clusters
can also change over time, for ease of exposition we assume they
are fixed.

Offline evaluation: The best way to evaluate a content optimiza-
tion method is to run controlled live experiments on small frac-
tions of randomly selected user visits on the Yahoo! Front Page.
However, such a method is expensive and not feasible in practice
for a battery of schemes that one may want to test. Hence, we
take recourse to an offline evaluation methodology that works on
logged data collected retrospectively [17, 14]. This offline evalua-
tion method can give us unbiased and replicable comparison. We
provide a brief description of the scheme below.

The logged data must be collected from a serving scheme that
selects each article from the pool with some known, non-zero prob-
ability. In our case, we collect view and click events from an exper-
iment where articles are displayed uniformly at random to a small
randomly selected user population. We shall refer to this as the
random bucket. The selection probability of each article is 1/n;
at epoch t; this avoids the need to estimate selection probabili-
ties from a non-randomized scheme and also ensures each article
is shown a large number of times.

Each view event in our logged data consists of the user segment
ID and article ID displayed at F1. For each click event, in addition
to user segment ID and article ID, we also record the time-spent (or
any other downstream metric of interest) on the landing property.
All the events are ordered temporally. The replay evaluation works
as follows. It goes through each epoch sequentially. At epoch ¢, we
perform the following steps:

1. Compute the expected CTR and time-spent for each (user
segment 4, article j) pair. The estimates are computed using
all data before epoch ¢.

2. Compute the allocation plan x; for the multiple objective op-
timization (MOP) under consideration.

3. Foreach event in t, if the user segment = ¢, we draw an article
j* from the current pool according to probability ;.. If the
article served in the logged data matches j*, we record this
matched event; otherwise we ignore it.

At the end of this process, we compute CTR and time-spent met-
rics based on the recorded events and it can be shown these esti-
mates are unbiased [17, 14]. Note that all the matched events for a
serving scheme give us a sample of user activities for that scheme.
Different serving schemes have different sets of matched events.
However, because each article in the random bucket has an equal
probability to be displayed to users, the number of matched view
events for any serving scheme is expected to be the same. A bet-
ter serving scheme to optimize CTR can match more click events.
We can thus compute the overall CTR and time-spent from these

matched events and use these metrics to compare different serv-
ing schemes. As emphasized before, under mild assumptions such
an evaluation provides an unbiased estimate of performance with
small variance when we use large amounts of data.

3. OBJECTIVE DEFINITIONS

In this section we introduce various objectives to be optimized in
our multi-objective programming (MOPs). We only consider con-
tent serving on a single position (the F1 position on Today Mod-
ule); optimizing for multiple positions is more involved and part of
future work.

We consider two different objectives — (a) total clicks and (b) to-
tal time-spent on landing properties. These objectives are standard
engagement metrics and commonly reported by companies like
comScore; they play a crucial role in forming advertiser perception
and measuring website performance. Also from a user satisfaction
perspective, it is important to encourage downstream engagement
with content in addition to clicks. For instance, the presentation of a
link (captions, images, etc) may sometimes boost click-rates with-
out generating high engagement; our MOP approach helps avoid
such artifacts by simultaneously optimizing for both downstream
engagement and CTR. We work with the two metrics mentioned
above to illustrate the main ideas on a real world application.

Let N; denote the total number of visits during epoch t. Also
let vy = (71, -, ™me) denote the fraction of visits in different
user segments. Obviously, Zie smit = 1 and N7 is the total
number of visits to segment ¢. In a MOP, 7; can be estimated
easily based on user visits in past epochs. We now describe the
objectives below. Since we solve MOP separately for each epoch,
we drop suffix ¢ from the notations. For example, x = {x; } is the
allocation plan for the current epoch.

e Total clicks: Note that Nm;x;; denotes the number of dis-
plays of article j in segment ¢; thus the total number of clicks
in the epoch is

TotalClicks(x) = N Z Z TiTijPij €))

i€ES jJEA

o Total time-spent: Recall that d;; is the mean of the time-
spent by a user in segment ¢ on the landing property of article
7 after a click; hence the total time-spent is

TotalTime(x) = N Z Z i Pijdij @3]

i€ES jEA

Before defining our MOPs, we first consider the click optimiza-
tion scheme with the serving algorithm that solely maximizes total
clicks (overall CTR); this algorithm serves as the baseline that our
MOPs will be compared to. Let {z;; } denote a serving scheme that
maximizes only for CTR. Then,

o 1 whenj = arg maxy pis
i = { 0 otherwise &)

We use TotalClicks™ and TotalTime™ to denote the value of ob-
jectives for the click maximization scheme; they are constants in
our MOPs.

4. OPTIMIZATION MODELS

In this section we discuss different ways of formulating multi-
objective optimization problems. In general multi-objective prob-
lems can be solved by a number of multi-criteria programming
techniques [20]. These include solving a single objective that is a



weighted average of multiple objectives or using goal programming
where the objectives are optimized sequentially with constraint(s)
that previous objectives retain a certain fraction of their optimal
value [12].

4.1 Scalarization

Assume TotalClicks and Downstream are the two objectives of
interest where Downstream can be TotalTime or other downstream
metrics of interest. To construct the allocation plan, we find the x
that maximizes

X - TotalClicks(x) + (1 — X\) - Downstream(x),

where A € [0, 1] represents the tradeoff between total clicks and
downstream engagement; with a smaller A we lose more clicks and
obtain better downstream engagement. It is easy to see that the
solution is given by

C)

[ 1, ifj=argmax; X pis+ (1 —A) - pisdis
Tij 0, otherwise

The tradeoff between objectives for a constant A may vary signif-
icantly across epochs. In fact in some epochs the loss in clicks
could be significant, this maybe a problem in some application sce-
nario. However, the ability to lose a significant number of clicks
in some epochs to obtain substantial gains in engagement may lead
to better results over a long time horizon. We shall refer to this
scheme as a scalarized multi-objective program, or s-MOP. Such
an approach is attractive when the website owner is interested in a
weighted combination of multiple objectives and it does not hurt if
any one of them deteriorates significantly. Since the objectives are
both linear, one drawback of this approach is the inability to ex-
plore all possible points on the Pareto optimal curve ([21] Chapter
7), it may miss out some interesting solutions. Another drawback
of this method is that it is not easy to introduce application-driven
business constraints.

4.2 Constrained Optimization

We now describe the constrained optimization approach to our
multi-objective problem. This is important when website owners
are interested in optimizing for multiple objectives but under cer-
tain constraints. This is the case in our problem. For instance, too
much variation in click loss changes the downstream supply and
could have an adverse impact on advertising. It is also not desirable
to get overall lifts in downstream metrics by significantly changing
the supply to different properties from the status quo. Hence, con-
strained optimization provides a reasonable approach in our appli-
cation scenario.

4.2.1 g-MOP: Global Constrained Optimization

We begin with the simplest version of MOP that involves con-
strained optimization of objectives at the global level. We will call
them global multi-objective programs or g-MOPs since they in-
volve objectives that are “global”. For our two-objective problem,
we obtain the design variable x as the solution to the following op-
timization problem. We note that {x;; }s are always non-negative
and on the simplex for each ¢; thus, we do not mention it explicitly
in describing our MOPs.

maximize Downstream(x)

. g 5)
s.t. TotalClicks(x) > « - TotalClicks

where « € [0, 1], and Downstream in this paper is TotalTime. Here
we want to obtain maximum improvement in downstream engage-
ment ensuring the percentage loss in total click volume in no more

than (1 — ). Since maximizing total clicks is the normative serv-
ing scheme in general, it is reasonable for website owners to con-
trol this loss. We also note that solutions to g-MOPs will show
lower variation in number of clicks lost per epoch relative to s-
MOP described earlier. In fact, one can interpret the constraint
imposed per epoch in g-MOP as inducing a different tradeoff pa-
rameter \; in s-MOP for epoch ¢. Hence constrained g-MOPs can
find solutions on the Pareto curve that are missed by s-MOP. With
Downstream = TotalTime in Equation 5, it is easy to see that the
optimal x to this problem can be obtained by a standard linear pro-
gram solver.

4.2.2  1-MOP: Localized Constrained Optimization

As mentioned before, the g-MOP formulation is reasonable when
landing pages in different properties are homogeneous. This is
hardly true in practice; the layout of the landing page on a prop-
erty may have a significant influence on the distribution of d;;s.
For instance, suppose we have two pages — an entertainment page
with several video links and a finance stock ticker page. The distri-
bution of time-spent for the video page is stochastically larger than
the finance page. Maximizing downstream engagement may Sim-
ply take away clicks from finance and route it to video page. In fact
the situation may get worse — we take away highly engaged users
on finance and route them to video where they engage less than a
typical video page user. To avoid such effects, we solve g-MOPs
under additional constraints. We refer to these as -MOPs and not
surprisingly, the /-MOPs come in various flavors depending on the
objective being maximized and the constraints being imposed. We
motivate the constraints that define the /-MOPs below.

Let us assume the articles have been grouped based on landing
page characteristics. We use the property grouping {Py,- -, Px}
described earlier to illustrate in this paper; some other grouping
may be important in other applications. Our first formulation to
address the inter-property heterogeneity maximizes the minimum
value of total engagement across properties subject to constraint
on click loss. By maximizing the minimum, we ensure “fairness”
since all properties receive the benefit of losing clicks on the portal
page. Before defining our constrained optimization problems, we
introduce some new notations.

Let Obj( P, x) denote the value of the objective restricted to prop-
erty P, and let Obj* (P) denote the objective value on property P
under the click maximization scheme where Obj can be TotalClicks,
TotalTime, or some other objective of interest. To normalize en-
gagement metrics across properties and create a single “currency”,
we measure engagement improvement for a property P by the ra-
%&,’:‘;. We are now ready to mathematically state our /-MOP
to ensure “fairness”.

MaxMin /-MOP:

tio

Downstream( Py, X) )
Downstream™ (Py,) (6)
s.t. TotalClicks(x) > « - TotalClicks™

maximizex ming {

When Downstream = TotalTime, the objective function is con-
cave and hence can be solved by convex programming techniques.
However it is not differentiable, so it is difficult to solve it directly.
We use a standard trick in convex programming that transforms the
problem to the epigraph form [21]. The epigraph for this program
is given by

maximize (3

Downstream( Py, x)

. >pk=1,.,K
Downstream™ (Py) — A T

TotalClicks(x) > « - TotalClicks”



It is easy to see that the above is a linear program.

Relaxed ¢-MOP: Although the MaxMin formulation encour-
ages the benefits of click loss to be shared among properties, the
socialistic nature may impose constraints that are too strict. In fact,
it may not be possible to get significant gains in downstream en-
gagement under such strict constraints in some applications. Fur-
thermore, portal owners may not care to improve engagement met-
rics of some properties; only a handful may be more important than
others. They may be satisfied with increasing total engagement by
ensuring engagement of important properties does not deteriorate
compared to the status quo. We can encourage such behavior by in-
troducing property level constraints but still maximizing aggregate
engagement. The number of properties subject to such constraints
can also vary. Formally our optimization problem is described be-
low.

maximizex Downstream (x)
s.t. Downstreams (Py,x) > Downstreams(Py), k € T
TotalClicks(x) > « - TotalClicks”
@)

where Downstream: and Downstreams can be the same or different
(in this paper they are both TotalTime), and Z is the set of properties
that are constrained. When this set is empty we fall back to g-MOP
and when it includes all properties, we have tight constraints but
these are still more relaxed than MaxMin ¢-MOP. Instead of con-
straining the properties to improve, we can also relax and provide
a lower bound to the maximum possible deterioration (it is easy
to incorporate such constraints). The solution techniques for this
class of problem again depends on the combination of downstream
engagement objective Downstream; and downstream engagement
constraint Downstreams. For total time-spent constraints, all vari-
ants of constrained /-MOPs can be solved using linear program-
ming!

S. STATISTICAL MODELS

In previous sections, we assume that 7, p;;¢ and d;;; are given.
In our application, we solve MOPs by “plugging-in” the expected
values estimated from a statistical model. Note that our formula-
tion requires clustering the users into segments, hence we focus on
segmented CTR (and time-spent) model in this paper. Since our op-
timization problem involves constraining click-loss, we create user
segments that are most predictive for estimating click-rates and use
these to estimate time-spent. Gains are significant if there is wide
variation in average time-spent across articles for a given user seg-
ment.

5.1 User Segmentation

Each user is characterized by a feature vector consisting of de-
mographics (age and gender) and affinity to different behavioral
categories (such as sports, finance or entertainment) based on cookie
activities throughout the Yahoo! network. In this paper, we illus-
trate with user segments constructed using a few strategies. We
consider three segmentation schemes:

e Age-gender: segments are obtained based on user age and
gender.

e Attribute-based: unsupervised k-means clustering on the at-
tribute vectors based on age, gender and behavioral affinities.

e Activity-based: unsupervised k-means that cluster users based
on their estimated click activities on different articles.

For age-gender segmentation, we discretize age into 10 groups and
have 3 gender groups (male, female, and unknown), and thus we
have 30 segments. Obtaining clusters using attribute-based k-means
is straightforward. For the activity-based k-means, we collected
large amounts of historic click data. A simple approach is to con-
struct a vector for each user based on the articles the user clicked.
However, this does not work so well since the distribution of user
visits is heavy tailed - a small number of users have many clicks and
a large fraction of users have few clicks. This imbalance makes it
difficult to construct user profiles directly from clicks. We build
a separate logistic regression model for each article based on user
attributes and use the predicted CTR values on each article to com-
pose the activity vectors. Specifically, let a,, denotes attribute vec-
tor for user u, then the click probability on article j for user w is
Ouj = m, where 7, for article j is estimated through
a logistic regression for article j based on all the users who clicked
(positive examples) or viewed j without clicks (negative examples).
This gives us an activity-based profile for user u based on 6,,; for a
set of articles in the historic data. We then cluster the users into seg-
ments by applying k-means on these profiles. A similar approach
was used in [7] with article categories instead of articles which im-
plicitly assumed a constant affinity for a given user for all articles
in a given category. We found wide variations in user affinities for
articles within a category, hence the profiles used in this paper are
at the article level.

For online serving, each user will be classified to a user segments
based on their corresponding article profile vectors. We note that
creating such a profile for historic articles that are no longer in the
pool is not a problem for us since we can always predict ,,; for
any user on any article j (old or new). For all k-means based clus-
tering, a centroid is kept for each cluster and a user is assigned to
the nearest one. In this paper, we use the cosine similarity and the
k-means algorithm proposed in [10, 9]

5.2 Estimation of =, p;;: and d;;

Given user segments, both user population ;¢ and time-spent
d;j¢ are estimated based on moving average over historical data.
For example, given all the epochs before ¢, we collect all click
events for article 7 from user segment ¢. Each click event has a
time-spent value and d;;; is estimated as the average time-spent
over all the clicks.

For CTR estimation, recall that p;;; denotes the CTR of user
segment ¢ on article j at epoch t. In [2], we showed that the
Gamma-Poisson model performs well for estimating CTR on such
segmented models. Let n;;; denote the number of times we show
article j to user segment ¢ at time ¢. Let ¢;;¢ denote the number of
clicks that resulted from these n;;; page views. For simplicity, as-
sume CTR does not change much over time in a user segment; thus
we drop index ¢ in p;j; (for the extension that captures temporal
dynamics, see [2]). The Gamma-Poisson model assumes

Cijt ~ POiSSOH(pij ’I’Li]'t)

pij ~ Gamma(mean=p;, size=";),

where p; is the CTR of user segment ¢ on a random article ac-
cording to our prior belief, and ~; is the equivalent sample size
of the prior belief (intuitively, this prior belief represents informa-
tion equivalent to ~; page views and ~;u; clicks). Effectively, the
Gamma-Poisson model is a “smoothed” counting model which es-
timates p;;¢ as

Dijt = <’Yiui + Zci]'7—> / <%. + Znijf> )

T<t T<t



If we have little data the estimate will be close to the prior ;; with
more data the estimate will be close to maximum likelihood.

6. EXPERIMENTS

In this section we report experimental results on Yahoo! Front
Page Today Module data.

Data: Our data set is derived from Yahoo! web server logs which
record the view and click information of users who interact with
the Today Module on the Yahoo! Front Page. We collected such
click and view data from a random bucket (defined in Section 2)
of the Today Module during August 2010. Around 2 million view
events were collected on average on a daily basis. To compute
downstream time-spent, we also collected post-click information
on all the pages that a user visited within Yahoo! after clicking on a
Today Module article.”> We use the first 1/3 of the data to learn the
user segmentation. The remaining 2/3 of the data is used to com-
pare different algorithms based the replay methodology described
in Section 2 that provides unbiased estimates.

Metrics: We define the time-spent d;; of a user in segment ¢ after
clicking article 7 € Py as the length (in second) of the session of
the user’s events that starts from the click and ends at the last page
view inside property Py, before the user either leaves the property
or has no activity for more than 30 minutes. For confidentiality
reasons, we cannot reveal the total number of clicks or total time-
spent. Thus, we only report the relative CTR and relative time-
spent as defined below. After running a replay experiment using
serving scheme A, we compute the average number of clicks per
view pa (i.e., CTR) and the average time-spent per view ga. Fixing
one baseline algorithm B, we report the performance of algorithm
A by two ratios: CTR ratio pcrr = z—’; and TS ratio prs = g—’;,

6.1 Results on Segmentation

Comparison of segmentation methods: In this set of experiments,
we report the performance of different algorithms in terms of CTR
and TS ratios by using the click optimization model with age-gender
segmentation as the baseline algorithm B. We first compare differ-
ent segmentation methods using both the s-MOP and g-MOP algo-
rithms in Figure 2. In this figure, the « (click-constraint parameter)
values used are {1, 0.99, 0.97, 0.95, 0.93, 0.9, 0.85, 0.8, 0} for
g-MOP and we vary A (tradeoff in scalarization approach) from 1
to 0 with decrements of 0.1. Each specific parameter value gives
us a pair of CTR ratio and TS ratio. The tradeoff curves are thus
obtained by varying these two parameters respectively for s-MOP
and g-MOP. We have 30 segments in age-gender model. For all
k-means-based clusters (feature and activity based), we also set the
number of clusters m to 30. Each method is represented by a curve;
the higher and more to the right the curve is, the better the perfor-
mance. From this figure we make the following observations:

(1) The activity-based segmentation significantly outperforms the
other two methods, while the age-gender segmentation is slightly
better than the attribute-based k-means method which clusters users
based only on their features. This shows that a carefully designed
user segmentation is crucial component of our method. Our activity-
based method can segment users much better because it uses click
information (one of our objective) to construct clusters. On the
contrary, the attribute-based method that uses only user profile fea-
tures is less effective. The age-gender model though simple, still
achieves better results than attribute-based k-means method.

By users we mean an anonymized browser-cookie. There is no
personally identifiable information in the data used in our experi-
ments.

Method CTR ratio TS ratio
mean stdev mean stdev
s-MOP (A=0.60) | 0.9580 | 0.0316 | 1.0850 | 0.0480

g-MOP (a=0.97) | 0.9604 | 0.0242 | 1.0830 | 0.0376

Table 1: Temporal variance of s-MOP and g-MOP.
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Figure 2: Comparison of user segmentation methods.

(2) The bottom right end point of each curve corresponds to o = 1
or A = 1, i.e., the performance of the click optimization model. As
we decrease the « values, we move up and to the left; the CTR ratio
becomes smaller but the TS ratio becomes larger. For example, for
the activity-based segmentation, comparing o = 1 and a = 0.97,
we increase the TS ratio from 1.10 to 1.20 (8.1% lift) and decrease
the CTR ratio from 1.08 to 1.04 (3.8% drop). This means both s-
MOP and g-MOP eftectively tradeoff clicks for time-spent. For all
the 3 curves, we observe similar trends and the curves become flat
towards the end as expected.

(3) We observe that s-MOP achieves better tradeoff than g-MOP,
especially with a less effective user segmentation. As described
earlier, the « constraint imposed per epoch in g-MOP can be inter-
preted as introducing a different tradeoff parameter \; in s-MOP
for each epoch ¢. The parameter o uniformly bounds the CTR loss
for the worst case over all the epochs while A bounds the CTR loss
on average. Thus, given the same CTR loss, we anticipate that
the temporal variance in CTR loss and TS gain will be large. To
verify this, for each epoch, we compute the CTR ratio of s-MOP
and g-MOP: 2A=0.6 &Ifi—fl and their TS ratios %AE—LF’ %’fﬁ’l
based on the activity-based segmentation. We compute the mean
and standard deviation of these four sets of values over all epochs
and summarize them in Table 1. From the table, we clearly observe
that the variances of both CTR ratio and T'S ratio in s-MOP are sig-
nificantly larger than g-MOP. In some epochs, s-MOP loses more
clicks to obtain better gains in time-spent, g-MOP on the other hand
is more stable in its tradeoff behavior over epochs. This shows the
desirable properties of constrained optimization, if significant de-
viation from the status quo CTR is not desirable during most time
periods, one should take recourse to constrained optimization.

Number of clusters: We study the impact of varying the number of
clusters m in the activity-based segmentation scheme on the trade-
offs between clicks and time-spent. In Figure 3, we plot tradeoff
curves for different values of m using g-MOP. As evident, choos-
ing number of clusters has a significant impact on performance. If
m is small, the clusters might get coarse and lead to biased CTR
and time-spent estimates for items within clusters. Increasing the
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Figure 3: The impact of the number of user segments using
activity-based k-means.
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Figure 4: Comparison of different constrained optimization
formulation.

number of clusters leads to high variance and deteriorates perfor-
mance. As can be seen from Figure 3, in our experiments, the
optimal m is between 30 and 50.

6.2 Results on Different Formulations

In this section, we compare three different formulations: g-MOP,
£-MOP-relaxed, and -MOP-MaxMin. For segmentation, we report
results only from activity-based k-means with m = 30 in the follow-
ing experiments. The CTR ratio and TS ratio are computed using
the click optimization model with the activity-based segmentation
as the baseline B.

Tradeoff comparison: We first compare the tradeoff curves of the
three formulations in Figure 4. In this figure, we can see that g-
MOP improves time-spent significantly with a small loss in CTR.
However, when we impose the per-property constraints in ¢-MOP-

relaxed, the time-spent gains become much smaller. /-MOP-MaxMin

has the least time-spent gain among the 3 formulations. For exam-
ple, when we set @ = 0.97, the TS ratio of these 3 methods are
1.08, 1.03 and 1.02. This is because after imposing per-property
constraints, we have less freedom to move clicks from one property
to another even when there is a property that has higher average
time-spent. The /-MOP-MaxMin model is more constrained since
it aims to improve every property simultaneously.
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Figure 5: Time-spent difference before and after click shaping
given the same amount of CTR loss.

g-MOP [ /-MOP-relaxed | ¢-MOP-MaxMin
click 0.2750 0.0637 0.0361
time-spent | 0.2764 0.0504 0.0134

Table 2: Comparison of the standard deviation over the most
popular 10 properties.

Both ¢-MOP-relaxed and /-MOP-MaxMin impose property-level
constraints. We show the impact of these constraints in Table 2. We
select the top 10 popular properties, and for each of these properties
we compute per-property total click and time-spent relative differ-
ence between o = 0.97 and o = 1 for all the 3 formulations using
t—“im We then compute the standard deviations for each
formuiatlon across all 10 properties. From this table, we can see
that the variance for g-MOP is much higher than /-MOP-relaxed
and /-MOP-MaxMin. To further illustrate the variance, we plot the
relative difference of time-spent for the 10 properties in Figure 5.
From this figure, we can see that the difference across properties
for g-MOP vary quite a bit. For example, for a given amount of
click loss, some properties can gain more than 60% in time-spent
whereas some properties lose around 30% in time spent. On the
other hand, ¢-MOP-relaxed and /-MOP-MaxMin have relatively
low variation across properties; no property loses total time-spent
significantly. This underlines the effectiveness of including per-
property level constraints in our MOPs. The figure also illustrates
the fairness of ¢-MOP-MaxMin - all properties experience similar
time-spent gains.

Fewer property constraints: We showed two extreme cases where
we either do not have any per-property constraints or we apply the
constraints on all properties. In reality, some constraints are more
important for certain business purpose. We show the results of
selectively applying the constraints on a subset of properties. In
Figure 6 and Table 3, we show the results of -MOP-relaxed with
constraints applied to the top 3, 5, 7 properties that have the largest
number of views in our data set. Clearly when we reduce the num-
ber of constraints, we can achieve much better gains in time-spent
with the same loss in clicks. On the other hand as shown in Table 3,
the variance in time-spent gain across top 10 properties becomes
larger when we enforce fewer constraints.

Example: To understand how clicks are shaped, we compare the
time-spent distribution based on /-MOP-relaxed in Figure 7 be-
fore and after click shaping on two properties. We discretize the



11

1.08

o 108 f 1

©

w

o104} 1
1.02 | :

all e . . . .
0.86 0.88 0.9 092 094 096 0.98 1
CTR ratio

Figure 6: Impact of number of constraints on /-MOP-relaxed.

Top3 | Top5 | Top7 All
click 0.2372 | 0.1792 | 0.1501 | 0.0637
time-spent | 0.2424 | 0.1818 | 0.1506 | 0.0504

Table 3: Comparison of the standard deviation over proper-
ties for /-MOP-relaxed with different number of per-property
constraints.

time-spent values into multiple bins and compute the percentage
of clicks that fall into each bin. Let Po—1(b) and Pa—0.97(b) be
proportional to the number of clicks in bin b before (« = 1) and
after (&« = 0.97) click shaping, we plot the ratio Pgiifzb()b) against
the time-spent bins in Figure 7. We also fit a regression line to
each property. It can be seen that both lines have positive slope
(0.004 for Property B and 0.002 for Property A) and this shows
the percentage ratio increases with increase in time-spent. This
means that after click shaping, we reduce the number of clicks that
result in lower time-spent but increase the number of clicks with
more time-spent for each property. This is expected behavior from
our formulation and more desirable because more engaged articles
(measured by time-spent) are recommended by our algorithms. The
fact that this behavior is empirically supported in real world appli-
cation provides a good validation of our theoretical formulation.

7. RELATED WORK

It is commonplace to measure user interaction with websites
through multiple metrics such as number of page views, number
of unique user visits, and total time-spent. Such metrics are rou-
tinely reported by companies like comScore and have profound
impact on advertiser perception. Most of the previous methods on
Web content optimization (e.g., [3, 8, 2, 1, 16]) focus on a single
metric: number of clicks. The problem is often formulated as a
multi-armed bandit problem [5, 15, 4]. However, to the best of
our knowledge, no prior work has attempted to provide methods
that simultaneously optimize a combination of various engagement
metrics.

Some instances of tradeoffs among multiple objectives are dis-
cussed in online advertising. For instance, auctions in sponsored
search incorporate both revenue (bid) and ad quality (measured
through CTR) in ranking ads [19]. The multi-objective program-
ming pursued in this area is simple — rank ads by product of bid
and CTR. In fact, this rule is a special case of s-MOP with A = 0 in
our formulation. Recent works on display advertising also consider
multi-objective programming to simultaneously optimize for rev-
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Figure 7: Time-spent distribution ratio between click shaping
and status quo.

enue of remnant inventory and overall ad quality delivered to adver-
tisers participating in the guaranteed display ads marketplace [11].
Another work that is somewhat related incorporates both CTR and
ad quality in ranking ads for sponsored search [22]. The authors
define a new measure called bounce rate to capture ad quality by in-
ferring abandonment rate on ad landing pages. However, the study
is more focused on ways to predict bounce rates and multi-objective
optimization is not the main focus. Other papers such as [13] con-
sidered constraints such as limited supply of the items in a collab-
orative filtering setting and [23] studied several objectives in learn-
ing to rank. Both of these are in a static setting and thus the whole
problem setup is different from our online recommendation.

We note that there is a rich and mature literature on multi-objective
programming [20]. We are not contributing new techniques to
this body of work. Instead, we have shown the utility of such
approaches in simultaneously optimizing for several engagement
metrics when recommending content on large Web portals in an
online manner.

8. CONCLUSIONS AND FUTURE WORK

In this paper we proposed click shaping, an effective way to rec-
ommend content on large portal pages to optimize simultaneously
for multiple engagement metrics. We formulated our problem in
a constrained optimization framework which can naturally incor-
porate application-driven business requirement. In particular, we
introduced a novel fairness objectives that aims to distribute gains
in engagement in a fair way among heterogeneous domains and
showed how this can be modeled in our framework. Through ex-
tensive data analysis on logged events, we provided unbiased esti-
mates of performance for various flavors of our MOP under differ-
ent constraints. Our data analysis reveals interesting characteristics
of different formulations with tradeoffs among multiple metrics.
We provide intuitive explanations of how clicks get shaped that in
turn provides valuable guidance to the design of online recommen-
dation engines.

Large variations in downstream engagement metrics provide more
opportunities for lucrative tradeoffs; we are currently exploring
methods to create fine grained user segments directly to maximize
multiple objectives. Our MOP shows that imposing per epoch con-
straints is stringent when the goal is to obtain good performance
over a larger time window. How to formulate solutions that en-
sure such long-term constraints but provide a per-epoch plan is a
challenging problem.
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