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1. INTRODUCTION

Web search is becoming a dominant method of information acquisition in our daily
life because of the explosive growth of online resources. Link-based ranking algo-
rithms have proven to be key to the success of web search engines. PageRank [Brin
and Page 1998; Page et al. 1999] and HITS [Kleinberg 1999] are the two earliest
link analysis algorithms to identify “authoritative” pages via hyperlink information.
Since then, many methods have been developed to improve the accuracy of these
algorithms (e.g., [Bharat and Henzinger 1998; Haveliwala 2002; Li et al. 2002]).

While the PageRank algorithm has been successfully used in Google search en-
gine and is attracting a lot of research attention recently, it has a “zero-one gap”
problem, which arises from the ad hoc way of computing the transition probabilities
in the random surfing model adopted in the existing work. In PageRank, a fictious
random web surfer visits the web pages one by one continuously. At each page, the
surfer would choose the next one by either following the out-links of the current
page with probability 1 − λ or jumping to a random page with probability λ. To
our best knowledge, all existing variants of PageRank fix the value of λ to be a
constant (often 0.15 [Brin and Page 1998]) for every page except “dangling pages”
(pages without out-links), whose λ’s are set to be 1 [Bianchini et al. 2005]. As a
result, the λ values of a page with no out-link and a page with a single out-link have
an unreasonably large gap. We refer to this problem as “zero-one gap”. On the
surface, we may reduce the gap by increasing λ, but a large λ value cannot effec-
tively exploit hyperlink information. Thus the “zero-one gap” problem is inherent
in PageRank.

The “zero-one gap” is indeed a flaw, since it can be potentially exploited to ma-
nipulate PageRank results by link spamming [Gyongyi and Garcia-Molina 2005a]:
Spammers can intentionally set up many interconnected pages to boost the PageR-
ank scores of a small number of target pages. For instance, Figure 1 illustrates a
typical link spam structure, where we use leakage to denote the PageRank scores
propagated to the link farm from external pages. In this structure, a web site owner
creates a large number of bogus web pages B’s (i.e., pages whose sole purpose is
to promote the target page’s ranking score), all pointing to and pointed by a single
target page T . As will be detailed in the rest of this paper, the “zero-one gap”
problem makes PageRank sensitive to this type of structures and tend to assign a
much higher ranking score to T than it deserves (up to 10 times easily).

Furthermore, the “zero-one gap” problem makes PageRank sensitive to certain
local structure changes, and thus unstable, which could reduce the effectiveness of
the state-of-the-art link-based anti-spamming techniques since they are all based
on the original PageRank algorithm. For example, the TrustRank [Gyongyi et al.
2004] and its variant Topical TrustRank [Wu et al. 2006] initialize trust scores from
well-known and trustworthy seed sites, and propagate them through hyperlinks
using PageRank-like methods. Since TrustRank can also be leaked to a spam page,
this spam page can manipulate its TrustRank score easily by adding a few bogus
pages similarly in Figure 1.

To our best knowledge, this “zero-one gap” problem has not been discovered
or addressed in any existing work. To solve it, we propose a novel DirichletRank
algorithm which, with comparable computational cost to PageRank, calculates the

ACM Journal Name, Vol. V, No. N, mm 20yy.



2 · Xuanhui Wang et al.

�

�

�
�

�

�

�

�

�
	��
 �����������

Fig. 1. An example of the link spams using bogus pages

transition probabilities using Bayesian estimation with a Dirichlet prior. Dirichlet-
Rank is a variant of PageRank, but it does not have the problem of “zero-one
gap” since in DirichletRank, the probability of jumping from a page to a random
page is a smooth function of the current page’s out-degree (see Equation (6)).
Furthermore, DirichletRank can be analytically shown to be substantially more
resistant to typical link farm spams such as Figure 1 than PageRank.

Experiment results on TREC data show that DirichletRank can achieve better
retrieval accuracy than PageRank due to its more reasonable allocation of transition
probabilities. More importantly, experiments on the TREC data set and another
real web data set from WebGraph project show that, compared with the original
PageRank, DirichletRank is more stable under link perturbation and is significantly
more robust against both manually identified web spams and several simulated link
spams. DirichletRank can be computed as efficiently as PageRank, and thus it is
scalable to large-scale web applications.

The rest of the paper is organized as follows. We first review the PageRank
algorithm and discuss the problem of “zero-one gap” in Section 2. In Section 3, we
present the proposed DirichletRank algorithm and analytically show its robustness
in dealing with link spamming. Our experiment results are presented in Section 4
and we discuss related work in Section 5. Finally we conclude our work in Section 6.
All proofs are given in the appendix.

2. THE “ZERO-ONE GAP” PROBLEM IN PAGERANK

In this section, we analyze PageRank’s “zero-one gap” problem and show its vul-
nerability to link spamming.

2.1 Basic PageRank

The basic PageRank algorithm [Page et al. 1999; Brin and Page 1998] models the
whole web as a directed graph G(V, E) with a vertex set V of N pages and a
directed edge set E. By collapsing multiple links between the same pair of pages,
we represent this graph by an N × N binary-value adjacency matrix:

A = [aij ]N×N where aij =

{

1 if (i, j) ∈ E
0 otherwise
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PageRank calculates the importance value of each page iteratively through the
importance values of its in-link pages. Formally, for each page v, let Nv be the out-
links of v, Bv be the in-links of v, and r(v) be the PageRank score of v, respectively:

r(v) =
∑

u∈Bv

r(u)

|Nu|
.

Assume M is the row normalized matrix of A, the updating of PageRank scores
can be expressed as:

r = MT
r.

When there is at least one non-zero entry in each row, mathematically the itera-
tive updating will converge to M ’s principal eigenvector. However, the convergence
is guaranteed only if M is irreducible and aperiodic [Motwani and Raghavan 1995].
In web applications, the latter is guaranteed but the former is not and may result
in the “rank sink” problem. To avoid this problem, PageRank introduces a uni-
form matrix U (Uij = 1/N) and interpolates it with the original matrix M with a
damping factor 1 − λ:

M̃ = (1 − λ) · M + λ · U (1)

where λ (0 ≤ λ ≤ 1) is the random jumping probability. The improved PageRank
scores are calculated as:

r = M̃T
r = (1 − λ)MT

r +
λ

N
eN

where eN = (1, ..., 1)T is a column vector consisting of N elements of 1, and λ is
typically set to 0.15 [Brin and Page 1998]. The intuition behind the interpolation
can be explained by a random surfing model. A surfer follows the out-links of a
page with probability 1−λ and uniformly jumps to random pages with probability
λ. A page’s PageRank score can be interpreted as the average probability that a
surfer would visit this page after surfing the whole web for a sufficiently long time.

2.2 Solving the “Zero Out-Link” Problem

The basic PageRank assumes each row of the matrix M has at least one nonzero
entry, i.e. the corresponding vertex in G has at least one out-link. Unfortunately,
this assumption never holds in reality. Many web pages simply have no out-link
at all. Moreover, it is very difficult to crawl the whole web and thus many web
applications can only consider a subgraph. In these cases, even if a page has out-
links, these out-links may have been removed when the whole web is projected to
a subgraph. For example, in the WT10G1 data, only 1, 295, 841 out of 1, 692, 096,
roughly 77%, documents have out-links. Simply removing all the pages without
out-links is not a solution because it generates new zero-out-link pages. Indeed,
this “dangling page” problem has been identified in [Ding et al. 2002; Bianchini
et al. 2005; Brin and Page 1998; Page et al. 1999; Eiron et al. 2004]. In [Bianchini
et al. 2005], the authors analyzed previous solutions and show that they all boil

1http://es.csiro.au/TRECWeb/wt10g.html
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Fig. 2. The random jumping probability w.r.t the number of out-links

down to the following approach:

M̃ = (1 − λ) · M + λ̃ · U (2)

where

λ̃(i) =

{

λ if
∑

j Mij = 1,

1 otherwise.

M̃ is a Markov matrix and guarantees the equilibrium distribution [Ding et al.
2002]. PageRank scores are:

r = (1 − λ)MT
r +

τ

N
eN

where τ is the weighted sum of the random jumping probabilities,

τ =

N
∑

i=1

r(i) × λ̃(i). (3)

It is easy to see that τ = λ when λ̃(i) = λ for 1 ≤ i ≤ N .
As proved in [Bianchini et al. 2005], Equations (1) and (2) are equivalent in terms

of final page ranking results, even if M̃ in Equation (1) is not a Markov matrix. In
the rest of the paper, we use Equation (2) as the formula for PageRank.

2.3 The “Zero-One Gap” Problem

Although Equation (2) solved the “zero out-links” problem, there is another prob-
lem, which has not been addressed: The probability of jumping to random pages
is 1 in a zero-out-link page, but it drops to λ (in most cases, λ = 0.15) for a page
with a single out-link. We illustrate this problem in Figure 2. The dashed line
in Figure 2 illustrates the random jumping probability of the PageRank algorithm
with respect to the number of out-links. Clearly there is a big “gap” between 0 and
1 out-link. We refer to this problem as “zero-one gap”. (Note that the solid line
in Figure 2 is DirichletRank to be discussed later.) On the surface, we can reduce
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Fig. 3. Two contrast structures. The only difference between (a) and (b) is that all B’s have back
links to the target page T in (b).

the gap by increasing λ. Unfortunately, a large λ would give the algorithm little
room to exploit the link information. Thus, the zero-one gap problem is inherent
in PageRank.

The zero-one gap problem represents a flaw in PageRank as it allows a spammer
to easily manipulate PageRank to achieve spamming. Consider the two structures
in Figure 3: (a) is a case without link spamming; (b) represents a typical spamming
structure with all bogus pages B’s having back links to the target page T . (Here
leakage denotes the PageRank scores propagated to the structures from external
pages too.) In general, the number of bogus pages k satisfies k � N , and thus we
can assume that τ in Figure 3 (a) equals to that in (b). Let ro(v) and rs(v) be the
PageRank scores of any page v in Figure 3 (a) and (b) respectively and we have
the following theorem.

Theorem 1. With k (k � N) bogus pages, σ leakage, and τ as the weighted
sum of the random jumping probabilities defined in Equation (3),

ro(T ) = σ +
τ

N
(4)

rs(T ) =
1

2λ − λ2

[

σ +
τ(k(1 − λ) + 1)

N

]

, (5)

and rs(T ) ≥ 1
2λ−λ2 ro(T ) for any positive integer k.

The proofs of Theorem 1 and all the following theorems are given in the appendix.
Theorem 1 shows that rs(T ) is larger than or equal to ro(T ) for any positive

integer k: Given λ ∈ [0, 1], ∂
∂λ

1
2λ−λ2 = −2(1−λ)

(2λ−λ2)2 ≤ 0. Thus, when λ = 1, 1
2λ−λ2

reaches its minimum value 1, and rs(T ) ≥ ro(T ) over the range of all λ values.
On the other hand, limλ→0

1
2λ−λ2 = ∞. This means a small λ, usually preferred

in PageRank [Page et al. 1999], can result in rs(T ) much larger than ro(T ). For
example, when λ = 0.15, rs(T ) is at least 3 times larger than ro(T ). Note that
the above analysis applies to all k’s. Clearly, as k increases, their difference will be
even more aggravated.

We see immediately an intrinsic problem in PageRank: when k = 1, there is only
one bogus page in Figure 3 (b), but the addition of the back link of this bogus page
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makes the PageRank score of the target page 3 times larger than before. This is
because a surfer is forced to jump back to the target page with a high probability
in Figure 3 (b)2. Indeed, given the default value λ = 0.15, the single out-link in a
bogus page forces a surfer to jump back to the target page with a probability 0.85!

The analysis above demonstrates that the “zero-one gap” represents a notable
problem of PageRank, which makes it sensitive to a local structure change and
thus vulnerable to link spamming. The “zero-one gap” is fundamental for all the
PageRank-like methods which use a fixed λ to do the interpolation. For example,
the state-of-the-art link-based anti-spamming algorithms TrustRank [Gyongyi et al.
2004] and Topical TrustRank [Wu et al. 2006] could be ineffective since spammers
can manipulate their trust scores easily by simply building link structures similar
to Figure 3 (b), once they can obtain some TrustRank leakage from other pages.
In the following sections, we focus our discussion on solving the “zero-one gap”
problem of the standard PageRank, but all the results are applied to all PageRank-
like methods equally.

3. DIRICHLETRANK ALGORITHM

In this section, we derive a new algorithm called DirichletRank based on Bayesian
estimation of transition probabilities. DirichletRank not only solves the problem
of zero-one gap, but also provides a more principled way to solve the original zero-
out-link problem. We analytically compare DirichletRank with PageRank and show
that DirichletRank is less sensitive to local structure changes and more robust than
PageRank.

3.1 Bayesian Estimation of Transition Probabilities

We note that the zero-one gap problem is caused by an unreasonable allocation of
probabilities in the random surfing model. A natural solution is thus to seek for a
more principled way to set such probabilities.

Let us assume that, in our random surfing model, the probabilities of a surfer
transiting from a page v to other pages follow a multinomial distribution Θv =
(θ1, ..., θN). We may treat all the pages that v’s out-links point to, Lv, as a sample
of this hidden distribution. Similar to previous work, we collapse the same pages in
Lv together, and thus the count of each page belonging to Lv is 1. A maximum like-
lihood estimator can then be used to estimate the Θv, giving us precisely the matrix
M discussed in the previous section. However, the maximum likelihood estimator
generates many undesirable zero probabilities due to the small size of the sample
as we discussed earlier. In statistical techniques, regularization is essential when
learning from small samples [Steck and Jaakkola 2002]. Here we take a Bayesian
approach where regularization is achieved by specifying a prior distribution over
the parameters and subsequently averaging over the posterior distribution [Steck
and Jaakkola 2002; Heckerman et al. 1995]. That is, we put a prior distribution on
the parameters Θv. Compared with maximum likelihood, the Bayesian approach
can provide smoother estimates of the parameters.

2Note that T in Figure 3 (b) might be a good page. In this case, T ’s score should depend on
leakage but not be dramatically boosted by its local structure.
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Conjugate priors are often used in Bayesian approaches since they permit ana-
lytical calculations [Steck and Jaakkola 2002]. Specifically, we define a Dirichlet
prior distribution, which is conjugate to multinomial distribution, on Θv with hy-
perparameter α = (α1, α2, . . . , αN ), given by

Dir(Θv |α) =
Γ(

∑N
i=1 αi)

ΠN
i=1Γ(αi)

N
∏

i=1

θ
[αi−1]
i

where Γ(·) is the Gamma function. The parameters αi can be specified by a number
of approaches [Cooper and Herskovits 1992; Steck and Jaakkola 2002; Heckerman
et al. 1995] and we adopt the common choice,

αi = µ · p(i)

where µ is a parameter and p is a prior distribution over all pages. Without any
prior knowledge, p(i) = Puniform(i) = 1

N
is the uniform jumping probability3. Since

Dirichlet is a conjugate prior for multinomial distribution, the posterior distribution

P (Θv|Lv) ∝
∏

i∈[1,...,N ]

θ
[c(i,Lv)+µPuniform−1]
i

is also Dirichlet, with parameters α̃i = c(i, Lv) + µPuniform where c(i, Lv) = 1 if
i ∈ Lv and c(i, Lv) = 0 otherwise. Using the fact that the Dirichlet mean is α̃i

∑

k
α̃k

,

we have:

P (i|Lv) =

∫

P (i|Θv) · P (Θv |Lv)dΘv

=

∫

θi · P (Θv|Lv)dΘv

=
c(i, Lv) + µPuniform

|Lv| + µ

= (1 −
µ

|Lv| + µ
)
c(i, Lv)

|Lv |
+

µ

|Lv| + µ
Puniform

= (1 − ωv)Pml + ωvPuniform

where Pml is the maximum likelihood estimator and ωv = µ
|Lv|+µ

. P (i|Lv) is the

estimated transition probability from page v to i. Note that |Lv| is equal to the sum
of the elements of the row corresponding to page v in A. In a Markov transition
matrix form, we have:

M̃ = diag{1− ω1, ..., 1 − ωN} · M + diag{ω1, ..., ωN} · U

where M and U are the same as in Equation (1). The ranking scores can be
calculated by solving the eigenvector equation:

r = M̃T
r

= diag{1− ω1, ..., 1 − ωN} · MT
r +

τ

N
eN

3In general, p can reflect any prior preferences in choosing the next page. For example, p can be
topic sensitive or query specific.
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where τ is a weighted sum of the jumping probabilities to a random page:

τ =
N

∑

i=1

r(i) × ωi.

The i-th value in vector r is the ranking score of the i-th web page. Since we use
Dirichlet prior to calculate the ranking values, we call our algorithm DirichletRank.
From the definition of ωv, we can see that the larger |Lv| is, the larger 1 − ωv will
be. Thus in DirichletRank, a surfer would more likely follow the out-links of the
current page if the page has many out-links. Intuitively, this is also reasonable. A
page with more out-links is presumably a good hub page for directing surfers to
good authority pages [Kleinberg 1999], and thus it is natural to believe that the
surfer will follow the out-links of such pages with higher probabilities.

The derivation above is analogous to a similar derivation of the Dirichlet prior
smoothing method in information retrieval [Zhai and Lafferty 2001; 2002], which
has also been shown to be quite effective for retrieval.

3.2 Comparison with PageRank

Bayesian estimation provides a principled way for setting the transition probabili-
ties. We now show that it not only solves the zero out-link problem in an elegant
way, but also solves the problem of “zero-one gap” naturally.

The random jumping probability of DirichletRank is

ω(n) =
µ

n + µ
, 0 ≤ n ≤ ∞ (6)

where n is number of out-links and µ is the Dirichlet prior parameter. We set
µ = 20 and plot ω(n) in Figure 2. The figure shows that the jumping probability
in DirichletRank is smoothed and there is no big gap between 0 and 1 out-link.

To compare with the PageRank algorithm, we define do(v) and ds(v) as the
DirichletRank scores of any page v in Figure 3 (a) and (b) respectively and also
assume τ of DirichletRank is the same for both Figure 3 (a) and (b) since k � N
in general. We then have the following theorem.

Theorem 2. With k (k � N) bogus pages, σ leakage, and τ as the weighted
sum of the random jumping probabilities,

do(T ) = σ +
τ

N
(7)

ds(T ) =

[

1 +
k

µ2 + (k + 1)µ

] [

σ +
k + µ + 1

µ + 1

τ

N

]

(8)

and ds(T ) ≥ do(T ) for any positive integer k.

On the surface, we obtain a similar conclusion as in the PageRank scores: ds(T ) is
still larger than or equal to do(T ). However, ds(T ) is in fact very close to do(T ). For

example, when we set µ = 20 and k = 1, ds(T ) ≈
[

1 + 1
202+2×20

]

do(T ) ≈ do(T ).

This indicates that there is no significant change in T ’s DirichletRank scores before
and after spamming. Thus DirichletRank is indeed more stable and less sensitive
to the change of local structure.
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We further analyze the influence of k on both PageRank and DirichletRank. In
PageRank,

rs(T ) =
1

2λ − λ2

[

σ +
τ(k(1 − λ) + 1)

N

]

=

[

1 − λ

2λ − λ2

τ

N

]

k +
1 − λ

2λ − λ2

[

σ +
τ

N

]

In DirichletRank, 1 + k
µ2+(k+1)µ < 1 + 1

µ
, thus,

ds(T ) =

[

1 +
k

µ2 + (k + 1)µ

][

σ +
k + µ + 1

µ + 1

τ

N

]

<

[

1 +
1

µ

][

σ +
k + µ + 1

µ + 1

τ

N

]

=

[

1

µ

τ

N

]

k +
µ + 1

µ

[

σ +
τ

N

]

In PageRank, the scores of target pages increase linearly with the number of bogus
pages k and the coefficient is cr = 1−λ

2λ−λ2

τ
N

. In DirichletRank, the scores of target

pages are upper-bounded by a linear function with the coefficient cd = 1
µ

τ
N

. A
typical setting λ = 0.15 leads to cr = 3.06 τ

N
. On the other hand, even if we set µ

to the smallest value 1, cd ≤ 1× τ
N

is much smaller than cr. In fact, a typical µ, as
our experiments show later, is 20, which leads to cd ≤ 0.05 τ

N
. 0.05 � 3.06. Thus, if

a spammer creates the same number of bogus pages, the influence on DirichletRank
is much less than that on PageRank.

Similar to PageRank, the major computation in DirichletRank is calculating the
principal eigenvector of transition matrix M̃ . Using the iterative Power Method
as in paper [Page et al. 1999], both have similar computational cost per iteration.
Note that in Equation (6), ω(n) approaches to zero as n approaches to infinity.
Theoretically, when all the pages have a large number of out-links, the second
eigenvalue of matrix M̃ in DirichletRank is close to 1, and thus the convergence
rate of the Power Method is very slow [Golub and Loan 1996; Haveliwala and
Kamwar 2003]. To overcome this difficulty theoretically, we can modify ω(n) by
incorporating a small constant parameter λ:

ω′(n) = λ + (1 − λ)ω(n)

We name the method based on ω′(n) as TwoStageRank ranking algorithm. How-
ever, practically, since the out-links of a web graph tend to follow a power law
distribution, DirichletRank can converge fast. In the discussion of the experiment
results, we will show that both DirichletRank and TwoStageRank can achieve com-
parable or even better convergence rates compared with PageRank. This means
that they both are applicable to web-scale applications.

3.3 Effect on Anti-Link-Spamming

In this section, we use a typical link spam structure plotted in Figure 3 (b) to show
that DirichletRank is more resistant to link spamming than PageRank.

As discussed in the previous section, a surfer in DirichletRank randomly jumps
away with a higher probability if the page has fewer out-links. Therefore, a single
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reversed link from each B to T fails to entrap the surfer in the local spam structure.
A spammer may attempt to break the DirichletRank algorithm by creating more
out-links in each bogus page to point to other bogus pages. This structure would
reduce the probability of jumping to a random page, and hence keep the probability
mass within the local structure. However, the following theorem shows that such a
spamming strategy would not work at all.

Theorem 3. The DirichletRank score d(T ) is independent of the internal con-
nections between bogus pages (B’s) when the following three conditions hold:

1) Target page T has a link to each of its bogus page B;
2) Each B has a reversed link back to T ;
3) T and B have no out-links to other pages except T and B.

This theorem indicates that a complex local structure may keep probability mass
within a local structure, but it is not able to boost the score of target page T . In the
next theorem, we show that the above situation is already the best that a spammer
can do. We make the assumption that no leakage goes to bogus pages B’s. This
assumption is reasonable since bogus pages are created internally for boosting a
target page.

Theorem 4. Given a fixed number of bogus pages k, when no leakage is added
into any bogus page, the optimal DirichletRank score for any spamming structure is

d(T ) =

[

1 +
k

µ2 + (k + 1)µ

][

σ +
k + µ + 1

µ + 1

τ

N

]

. (9)

According to Theorem 3, adding any link between B’s is an equivalently optimal
spamming structure. Theorem 4 further claims that any additional out-links from
bogus pages to the outside global web can only make a structure sub-optimal.
Thus, the best that a spammer can do is to set up a spamming structure such as
Figure 3 (b). However, in the previous subsection, we have demonstrated that the
DirichletRank score of a target page with such an optimal spamming structure is
close to the score without any spamming.

Increasing the number of bogus pages is one way to increase a target page’s
DirichletRank score. But as we analyzed before, the coefficient cd of the number
of bogus pages in DirichletRank is much lower, indicating a spammer needs to set
up many more bogus pages. More bogus pages cost the spammer more effort, and
also make spam structures much easier to detect. In the experiment section, we
will empirically study the impact of number of bogus pages.

3.4 Discussions

We have thus theoretically demonstrated that DirichletRank is more resistant to
several typical spam structures. In general, it is impossible to enumerate all such
structures. But since most link spam structures and anti-link-spamming techniques
studied in previous works are on the basis of PageRank, they are all affected by
the “zero-one gap” problem. DirichletRank solves the “zero-one gap” problem, and
thus can replace PageRank and provide a more sound basis. For example, the
“collusion” structure studied in [Zhang et al. 2004] cannot entrap DirichletRank
because the number of out-links in each target page is only 1 so that a surfer
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will jump away to a random page with a probability approaching to 1. We will
demonstrate this in the experiment section.

A major feature of DirichletRank is that the surfer will follow the out-links of a
page with higher probability, if it has more out-links. On the surface, this looks
more dangerous since spam pages may have more out-links and DirichletRank can
be trapped into a link farm if it is huge. However, in real web data, there are even
more good pages which also have a large number of out-links. Our results on the
real web data show that empirically DirichletRank is overall beneficial. Moreover,
compared with PageRank, spammers need to pay much more effort so as to build
highly-connected large link farms to manipulate the DirichletRank algorithm, while
they can manipulate the PageRank algorithm with little effort by exploiting the
“zero-one gap” problem.

4. EXPERIMENTS

We use two data sets in our experiments: the .GOV data set of TREC conference4

crawled in 2002 and the .UK data set of WebGraph project5 crawled in 2006. The
.GOV data set has about fifty queries and the relevant web pages manually judged
for each query. The .UK data set has a sample of web hosts which are judged by
humans to be spams or not. For DirichletRank and PageRank, the .GOV data set
is used to compare their search effectiveness. We use both data sets to compare
their resistance against link spams (real spams on the .UK data set and simulated
spams on the .GOV data set).

The .GOV data set is about 18 Gigabytes in size and contains 1, 247, 753 web
pages crawled from the “.gov” domain in 2002. 1, 053, 372 documents are in html
format; all the others are of non-html format (e.g., pure text, pdf, postscript,
Microsoft Word) and therefore have no out-links at all. Each page has 8.94 out-
links on average. Both content and link information of pages in .GOV data set are
used to study the search effectiveness.

The .UK data set is much larger. It contains 77,741,046 web pages crawled from
the “.uk” domain in May, 2006. There are 2,965,197,340 hyperlinks in total in
this data set and each web page has 38.14 out-links on average. We only use the
link information in this data set to study the link spams; as this data set does not
have queries with relevance judgments, we cannot use it to evaluate the ranking
accuracy.

In the following sections, we will compare DirichletRank with PageRank in terms
of ranking accuracy, stability under perturbation, and resistance against link spam-
ming. We will show that DirichletRank achieves better retrieval accuracy than
PageRank. More importantly, DirichletRank is shown to be much more stable
under link perturbation and more robust against link spamming than PageRank.

4.1 Effectiveness for Web Search

To evaluate their ranking accuracy, we use the fifty “topic distillation” topics cre-
ated by NIST for TREC-2003 task. (Note that the results in this subsection are
adapted from our previous work [Wang et al. 2005].) On average, there are 10.32

4http://trec.nist.gov/
5http://law.dsi.unimi.it/
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Table I. Results of different ranking algorithms
Methods MAP P@5 P@10

Okapi 0.106 0.112 0.088

PageRank (impr.) 0.134(26%) 0.148(32%) 0.11(25%)

DirichletRank (impr.) 0.140(32%) 0.156(39%) 0.116(32%)
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Fig. 4. Performance comparison along with different parameters

relevant documents per topic. We use mean average precision (MAP), precision
at 5 documents (P@5), and precision at 10 documents (P@10) as our evaluation
metrics. We use the Okapi retrieval method and the BM25 weighting function for
initial retrieval; the parameters are set to the same values as in [Cai et al. 2004]
(i.e. k1 = 4.2, k3 = 1000, b = 0.8). We choose the top 2000 documents accord-
ing to Okapi scores and construct two rankings of the documents, based on the
Okapi scores and link information, respectively. We use ranktext and ranklink to
represent the positions of a document in the two ranking lists. The final ranking is
obtained by ordering documents increasingly according to a combination of these
two ranking positions [Cai et al. 2004]:

α · ranktext + (1 − α) · ranklink

The 2000 documents are re-ranked according to the formula above and we select the
top 1000 documents for the final evaluation. We vary α to select the best results
for both DirichletRank and PageRank.

Table I lists the best results of PageRank and DirichletRank. Compared with
the best result of TREC2003 participants (with MAP of 0.1543 and P@10 of
0.1280) [Craswell and Hawking 2003], which only used the text/html format web
pages, the results of PageRank in our experiment are reasonable (with MAP of
0.134 and P@10 of 0.11). From Table I, we see that both link-based ranking algo-
rithms improve the performance significantly over the content-based Okapi method.
Furthermore, DirichletRank achieves better performance than PageRank on all the
three metrics: 4.03% on MAP, 5.41% on P@5, and 5.55% on P@10. A Wilcoxon
signed rank test indicates the improvement on MAP is statistically significant (p-
value=0.034).
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We also study the performance under different parameter settings. The results
are in Figure 4. In Figure 4(a), the average precision is plotted along with different
α values. DirichletRank achieves best results when α = 0.96 and µ = 20. The
PageRank achieves the best result when α = 0.98 and λ = 0.1. Figure 4(b) shows
the performance under different λ and µ values where α’s are set respectively to
the optimal values as above. When µ goes to infinity or λ goes to 1, the link-based
ranking will be uniform thus the performance is equal to the content-based method.
Note that these empirical results show that a small λ value is preferred to ensure the
effectiveness of PageRank; unfortunately, it makes the zero-one gap larger, causing
PageRank more sensitive to link farm spams. DirichletRank achieves the best result
when we set µ = 20.

These results show that our solution to zero-one gap problem improves ranking
accuracy over the original PageRank due to more reasonable allocation of transition
probabilities. In the following experiments, we compare DirichletRank with PageR-
ank in terms of stability under perturbation and robustness against link spamming.
Unless otherwise stated, we set λ = 0.15 for PageRank as suggested in [Brin and
Page 1998] and set µ = 20 in the following experiments.

4.2 Stability under Perturbation

Stability is an important property for a reliable ranking algorithm. In general, a
stable ranking algorithm does not change its ranking dramatically when a small
perturbation (e.g., removing or adding a small number of links or pages) is im-
posed [Ng et al. 2001]. In this section, we compare DirichletRank with PageRank
in terms of stability. We simulate perturbation by varying the density of the links
in the web graph in a way similar to how it is done in [Xue et al. 2005]. Specifically,
we first perturb the web graph by randomly deleting f% links with f varied from
10 to 70, and then compute PageRank and DirichletRank scores in these perturbed
web graphs and compare both the new ranking scores and ranking positions with
the original ones.

Since PageRank/DirichletRank score vectors are the stationary probability dis-
tribution of a Markov matrix, we can measure the difference between the two score
distributions by 1-norm error. Given two probability distributions p(x) and q(x),
the 1-norm error is defined as

`1(p, q) =
∑

x

|p(x) − q(x)|

In our experiment, p(x) is the scores from the original graph and q(x) is the scores
from the perturbed graph.

We also measure the difference between two ranking lists by normalized Kendall-
τ distance. Given two ranking lists τ1 and τ2 of N web pages, the distance is defined
as

Kendall(τ1, τ2) =
|{(u, v) : τ1, τ2 disagree on order of (u, v), u 6= v}|

N × (N − 1)
.

Note that Kendall distance measures the difference based on ranking positions,
instead of ranking scores.

We compare the stability of DirichletRank and PageRank in Figure 5, where
the x-axis denotes the percentage of deleted links f% and y-axis denotes the 1-
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Fig. 5. The stability comparison under perturbation. Small values indicate small difference.

norm error in (a) and Kendall distance in (b); the smaller the value is, the more
stable the algorithm is. In both figures, we can observe that the difference values
of the two PageRank curves are much higher than the DirichletRank ones. This
means our solution to zero-one gap makes the ranking algorithm more stable under
perturbation.

4.3 Resistance against Link Spamming

In this section, we study the impact of link spamming on both DirichletRank and
PageRank based on the real spams in the .UK data set and simulated spams on
the .GOV data set.

4.3.1 Results on Real Spams. On the .UK data set, 8415 hosts are manually
labelled by humans to be spam, normal, or borderline. (More details can be found at
http://aeserver.dis.uniroma1.it/webspam.) We only use the spam and normal
hosts to construct our evaluation data set and filter out those hosts which do not
have host homepages in the .UK web graph. Finally, we have 540 spam hosts
and 6190 normal hosts (6730 in total) in our evaluation set. For DirichletRank or
PageRank, we first compute a ranking list for the whole .UK graph. We then obtain
a small ranked list of the 6730 host homepages by ignoring other pages. Taking
these 6730 hosts as a sample of the whole web graph, we compare DirichletRank and
PageRank using spam-precision, spam-recall, and spam-MAP defined as follows.
Given a ranked list of N pages, a better or spam-resistant ranking algorithm would
rank the spam pages lower in the list. To compare different ranked lists, we treat
spam pages as “relevant” pages and normal pages as “irrelevant” pages. In this
way, traditional precision, recall, and MAP can be defined accordingly. We name
them as spam-precision, spam-recall, and spam-MAP. All these measures capture
the ranking positions of the spam pages in a rank list. Different from traditional
measures, lower values here indicate better performance as they mean that spam
pages are ranked lower.

As we showed in Section 4.1, link information can be very useful for improving
search accuracy, but its utility can be impaired by link farms. Totally ignoring
link information can make search ranking algorithms immune to link farms, but
at the same time, search utility would also be decreased since we do not exploit
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Fig. 7. Distribution of spams in different buckets.

link information. A good link analysis algorithm should be more robust against
link spams while still improving search accuracy as much as possible. To compare
the resistance against link spams of DirichletRank and PageRank, we vary the
parameters µ of DirichletRank and λ of PageRank in their ranges where search
accuracy is improved according to Section 4.1 (i.e., µ is varied from 5 to 50 and λ
is varied from 0.1 to 0.5). In Figure 6, we show the results evaluated by spam-MAP
and spam-PR curves. In Figure 6(a) we compare them using spam-MAP. We can see
that when µ ≥ 5, DirichletRank achieves lower spam-MAP values than all the spam-
MAP values of PageRank. In Figure 6 (b), we use the interpolated spam-PR curves
of µ = 20 and λ = 0.15 to further compare DirichletRank and PageRank. Clearly,
at lower spam-recall levels, the spam-precisions of DirichletRank are much lower
than those of PageRank, while at other spam-recall levels, DirichletRank achieves
similar spam-precisions compared with PageRank. This shows that DirichletRank
can push the spam pages to the lower positions, especially from the top-ranked
positions. In the Web domain, top-ranked spams are more harmful since users
tend to only view the top 10 or 20 results. In this figure, we also plot the results
of TwoStageRank algorithm (its λ is set to 0.05). We see that it achieves similar
results to DirichletRank.

To see the distribution of the spam pages in term of ranking positions, we use
a similar method as in paper [Gyongyi et al. 2004] by splitting a ranking list into
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Fig. 8. Percentage of spam and normal pages demoted in different buckets.

different buckets. Each bucket contains a different number of hosts and we let the
boundaries of buckets grow exponentially as we go down the rank list. Finally, we
split the 6730 hosts into 8 buckets. For each bucket, we calculate both the absolute
number and relative percentage of spams in it. The results are shown in Figure 7.
We can see that in the first several buckets, DirichletRank has fewer spams than
PageRank. For example, in the first bucket (0∼80), DirichletRank has only 1 spam
page while PageRank has 7 out of 80. All these results show the effectiveness of
DirichletRank on demoting spams, especially from the top-ranked positions, which
is more crucial in the web domain.

Since DirichletRank emphasizes more on pages with more out-links, we empir-
ically analyze its impact on pages with different out-degrees. We first define a
measure called relative ranking change (RRC) for each of the 6730 pages as fol-
lows. Suppose a page i is ranked at the sth position in DirichletRank and the tth
position in PageRank, its RRC is defined as

RRC(i) =
s − t

s + t
.

It is easy to verify that −1 ≤ RRC(i) ≤ 1. Inequalities RRC(i) < 0 and
RRC(i) > 0 mean that page i is promoted and demoted, respectively, by Dirichlet-
Rank compared with PageRank. RRC is a relative measure which emphasizes on
the top-ranked positions. To show the impact of DirichletRank on pages with dif-
ferent out-degrees, we split all the 6730 pages into 5 buckets according to their
out-degrees (i.e., 0∼2, 2∼10, 10∼50, 50∼250, and 250∼1250). For each bucket, we
calculate a value percentage demoted (PD) based on RRC for the spam and normal
pages respectively as follows. Given a set of pages S, its PD is calculated as

PD(S) =
|
∑

i∈S,RRC(i)>0 RRC(i)|

|
∑

i∈S,RRC(i)>0 RRC(i)| + |
∑

i∈S,RRC(i)<0 RRC(i)|
.

PD values reflect the percentage of pages demoted in terms of RRC and we use
PD to show the impact of DirichletRank in Figure 8. It is not surprising to see that
DirichletRank demotes more pages with lower out-degrees. For example, in bucket
2∼10, more than 80% of pages are demoted while in bucket 50∼250, only around
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20% of pages are demoted. An interesting observation is that: in most buckets,
by comparing the PD’s of spam and normal pages, we can see that DirichletRank
demotes more spam pages than normal ones. This shows that the emphasis on
pages with many out-links by DirichletRank is overall beneficial.

4.3.2 Results on Simulated Bogus-Page-Based Spams. We further study the im-
pact of bogus pages on DirichletRank and PageRank by simulating bogus-page-
based spams on the .GOV data set. For both DirichletRank and PageRank, we
use the same way to simulate the spams as follows: Given a link-based ranking al-
gorithm, we first calculate the baseline spam-free ranking scores using the original
clean .GOV data. We then select ten pages (i.e., the 10, 000th, 20, 000th, ..., and
100, 000th) from the spam-free ranking list as our target pages. We remove the
out-links of all these target pages, and for each target page, create k bogus pages,
each with an in-link from and an out-link to the corresponding target page. After
spamming these target pages, we re-calculate the ranking scores for all the pages
on this spammed .GOV data set. We evaluate the vulnerability of the ranking
algorithm by comparing the ranking (position) change of each target page before
and after spamming and by computing the amplification factor, which is defined
as the ratio of the new ranking score to the old ranking score as in paper [Zhang
et al. 2004].

Figure 9 shows the changes of the 10 spammed target pages. Note that the com-
parisons only apply to the 10 spammed pages. We set k = 10 and plot two curves
in Figure 9(a) to compare the rank changes of DirichletRank and PageRank. To
facilitate comparison, we also plot the straight diagonal line, which represents the
ideal case when no rank has changed; clearly, the closer a curve is to the diago-
nal line, the less sensitive the corresponding ranking algorithm is. We observe in
Figure 9(a) that the DirichletRank curve is much closer to the diagonal line. For
example, after spamming, the 50, 000th page is promoted to the 9, 201th by PageR-
ank, but only to the 36, 940th by DirichletRank. This confirms that DirichletRank
is much less sensitive to bogus-page-based spamming. Figure 9(b) shows the aver-
age amplification factor of the ten target pages along with k. In both algorithms,
the amplification factors increase roughly linearly with k, but DirichletRank has a
nearly flat slope and significantly lower amplification factor values. Note that there
is a jump between k = 0 and k = 1 in the PageRank curve, precisely because of
the “zero-one gap” problem that we discussed at the beginning of this paper. This
supports Theorem 1 and Theorem 2 empirically.

Figure 9 (c) and (d) show the ranking position changes of the 10 spammed pages
in DirichletRank and PageRank respectively. It is expected that a larger k would
promote a target page more than a smaller k, but we can also clearly see that curves
in Figure 9(c) are much closer to the diagonal line, indicating that DirichletRank is
significantly less sensitive than PageRank for all the k values plotted. Indeed, the
impact of 30 bogus pages on DirichletRank is still much less than that of a single
bogus page on PageRank.

4.3.3 Results on Simulated Collusion Spams. We now study the impact of the
link alliance spam structures, in which a group of spammers collaborate to build
link farms [Gyongyi and Garcia-Molina 2005a]. In particular, we study the collu-
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Fig. 9. Resistance comparison on bogus-page-based spams. Note that the comparisons only apply
to the 10 spammed pages.

sion structure identified in [Zhang et al. 2004], in which a set of nodes modify their
out-links to improve each other’s PageRank scores. In [Zhang et al. 2004], collu-
sion structures are detected by predefined rules, which needs to calculate PageRank
eigenvectors multiple times for several different λ values, and thus it is time con-
suming. We find that our DirichletRank algorithm can solve the collusion problem
well without computing the eigenvectors multiple times.

Similar to [Zhang et al. 2004], we select 100 ranking positions, 1000th, 2000th,
..., and 100000th. At each position, we select two adjacent pages, delete all their
out-links, and then add two links between them with each pointing to the other.
We calculate the rankings before and after the modification.

Figure 10 shows the impact of the simulated collusions. Note that the compar-
isons only apply to the spammed pages. We show both the results when we delete the
out-links and when we create the collusions for the 100 pairs of pages. Once again,
we see clearly that such collusions can not change the ranking of DirichletRank algo-
rithm much, but can dramatically change the PageRank ranking. Figure 11 further
shows the impact of collusions under different values of λ and µ. We again observe
that PageRank is very sensitive to collusion structures, while DirichletRank is much
more stable. For example, the amplification factor in PageRank is up to 20 when
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Fig. 10. Comparison of DirichletRank and PageRank on collusions. Note that the comparisons
only apply to the 100 spammed pairs
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Fig. 11. Parameter influences of DirichletRank and PageRank after collusion spams. Note that
the comparisons only apply to the spammed pages.

λ = 0.05, but all the amplification factor values are close to 1 in DirichletRank.

4.3.4 Degradation of Retrieval Accuracy from Spams. To study the impact of
link spams on retrieval accuracy, we use the same queries and the same .GOV data
set as Section 4.1 in this experiment. We simulate the link spams by randomly
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Table II. The impact of spams on retrieval accuracy
Methods MAP P@5 P@10

PageRank 0.134 0.148 0.11

Spammed PageRank (diff.) 0.123(−8%) 0.132(−11%) 0.102(−7%)

DirichletRank 0.140 0.156 0.116

Spammed DirichletRank (diff.) 0.139(−1%) 0.156(−0%) 0.116(−0%)
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Fig. 12. Comparison of computational complexity.

selecting 5% from the pages which contain query keywords and randomly creating
the spam structures studied above (5 bogus pages or collusion) for them. The results
are summarized in Table II as spammed PageRank and spammed DirichletRank.
Compared with DirichletRank, PageRank is very sensitive to the spam structures
and the accuracies are deteriorated much. DirichletRank is much more robust
and its accuracies are almost the same as the one without spamming. All the
results confirm that DirichletRank is much more resistant against link spamming
by addressing the zero-one gap problem.

4.4 Time Complexity and Score Distribution

Using Power Method, DirichletRank and PageRank have similar complexity for
a single iteration. Therefore, the total computation time is determined by the
number of iterations needed for convergence. In Figure 12, we show the number
of iterations needed for convergence for both DirichletRank and PageRank. (We
stop the iterations when the 1-norm error of score vectors in the last two iterations
is less than 0.001.) On both data sets, the numbers of iterations decrease as the
parameter value increases. This is because the weighted sum of the random jumping
probabilities τ increases as the parameter value increases. It can be seen that on
.GOV data set, DirichletRank converges faster than PageRank, while on .UK data
set, PageRank converges faster than DirichletRank. This is because the average
number of out-links of .UK data set is larger than that of .GOV data set and the
τ values are smaller on the .UK data set for DirichletRank. When λ = 0.15 and
µ = 20, the numbers of iterations of DirichletRank and PageRank are comparable.
In Figure 12(b), the results of TwoStageRank (its λ = 0.05) are also plotted.
Clearly, TwoStageRank can converge faster than DirichletRank and even faster
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than PageRank on the .UK data set, which confirms our discussion in Section 3.2.
To show the distribution of ranking scores, we partition the pages into 20 buckets

as follows: Given a ranking list of pages in decreasing order of their ranking scores,
we partition the list into buckets such that the sum of scores of each bucket is 0.05.
Thus the first bucket contains those pages which have highest scores. Figure 13
shows the results for different parameters and we can see that all the lines have
similar slopes before bucket 14 and the lines tend to be flat after bucket 14 when the
parameters (both µ and λ) are larger. We can see that the shapes of the curves are
related to the parameters µ and λ. Furthermore, with parameters such as µ = 10
and λ = 0.2, Figure 13 shows that DirichletRank and PageRank can have similar
skewness, and thus similar score distribution.

5. RELATED WORK

PageRank [Brin and Page 1998] and HITS [Kleinberg 1999] are the two earliest link
analysis algorithms using eigenvectors to identify “authoritative” pages via hyper-
link information. Since the introduction of these two algorithms, several methods
have been developed to improve their accuracy. BHITS [Bharat and Henzinger
1998] tries to alleviate the dominance of certain special link structures in the HITS
algorithm. ARC [Chakrabarti et al. 1998] combines the pure link-based HITS with
the anchor text describing the topics. Randomized HITS and Subspace HITS [Ng
et al. 2001] modify HITS to get a more stable algorithm. PHITS [Cohn and Chang
2000] proposes a statistical hubs and authorities algorithm. [Li et al. 2002] solves the
“small-in-large-out” problem of HITS. [Haveliwala 2002] calculates topic-sensitive
PageRanks based on the web page categories. Focused PageRank and Double Fo-
cused PageRank [Diligenti et al. 2002] and also the Intelligent Surfer [Richardson
and Domingos 2002] try to combine the link and content information in PageRank.
The visual block structures within web pages and the directory structures of web
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sites are used to improve PageRank accuracy by [Cai et al. 2004] and [Xue et al.
2005] respectively. The stability of the link analysis algorithms are studied in [Ng
et al. 2001; Borodin et al. 2001; 2005; Lempel and Moran 2005] and PageRank is
shown to be relatively more stable than HITS in general [Ng et al. 2001]. A flurry
of works are studied to conduct theoretical analysis on PageRank and accelerate
its computation. For example, [Baeza-Yates et al. 2006] studies PageRank from
the perspective of damping functions and it generalizes the original PageRank al-
gorithm by proposing several different types of damping functions. Other examples
include [Kamvar et al. 2003; Boldi et al. 2005; Bianchini et al. 2005; Jeh and Widom
2003; McSherry 2005]. A good survey of PageRank can be found in [Berkhin 2005].
However, to the best of our knowledge, none of the work addressed the “zero-one
gap” problem of PageRank.

Web spamming is studied recently. The taxonomy of web spamming is defined
in [Gyongyi and Garcia-Molina 2005b]. Link alliance structures, in which a group
of spammers collaborate to build link farms, are studied in [Gyongyi and Garcia-
Molina 2005a] theoretically. However, detection of web spamming, especially link
spamming, is a very challenging problem. Most previous anti-spamming work ad-
dresses it heuristically. For example, [Fetterly et al. 2004] analyzes the the statistical
distribution of web pages and treats the outliers as spam pages. [Zhang et al. 2004]
observes that the influence of spam structures is sensitive to the random jumping
probability λ and hence proposes two heuristics of personalizing λ for spam de-
tection. [Benczur et al. 2005] assumes that only honest pages have their in-link
neighbors’ PageRank scores obeying a power law distribution. This method, how-
ever, would not work well when a page does not have a sufficiently large number
of in-link neighbors. Moreover, it is computationally expensive, and thus cannot
handle large data sets efficiently. [Wu and Davison 2005] identifies a link farm seed
set through a page’s out-link and in-link domains, and then makes a second expan-
sion to identify more spams. It is very sensitive to the parameter settings. [Ntoulas
et al. 2006] and [Becchetti et al. 2006] use classification techniques to detect spams
relying on content analysis and link analysis respectively.

TrustRank [Gyongyi et al. 2004] and Topical TrustRank [Wu et al. 2006] are
two PageRank-like methods proposed recently to quantify pages’ honesties. Both
rely on the fact that good pages seldom point to bad ones and propagates trust
scores through hyperlinks from good seeds, which are identified by human experts
manually. These methods incorporate human labeling and thus could be more
reliable than the above heuristics. However, since they are biased PageRanks,
both suffer from the “zero-one gap” problem and thus could be ineffective to anti-
spamming.

The current work is an extension of our previous work [Wang et al. 2005]. In this
work, we show that our method addresses a fundamental problem in PageRank that
makes PageRank prone to be spammed. Since most existing methods are based on
PageRank, our method can potentially be combined with them to improve their
effectiveness in anti-spamming.
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6. CONCLUSIONS

In this paper, we showed that the popular link-based ranking algorithm PageRank
has a “zero-one gap” problem, which can be potentially exploited to spam its rank-
ing results. We propose a novel DirichletRank algorithm, which computes these
probabilities in a more principled way using Bayesian estimation with a Dirichlet
prior. Experiment results show that DirichletRank improves ranking accuracy over
the original PageRank due to its more reasonable allocation of transition probabil-
ities. More importantly, we show both analytically and empirically that Dirichlet-
Rank is much more robust against link spamming than PageRank. We compared
the stability of DirichletRank and PageRank under perturbation and evaluated
the influence of the real spams, simulated bogus-page-based spams, and simulated
collusion spams. In all the experiments, DirichletRank is shown to be more sta-
ble under perturbation and be substantially more resistant against link spamming.
Since most existing anti-spamming methods are based on PageRank, our method
can potentially be combined with them to improve their effectiveness. Dirichlet-
Rank can be computed as efficiently as PageRank by Power Method, and thus it is
scalable to large-scale web applications.
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A. PROOFS

A.1 Proof of Theorem 1

Proof. Equation (4) follows directly from the definition of PageRank, and
Equation (5) is proven in [Gyongyi and Garcia-Molina 2005a]. Here we prove
rs(T ) ≥ 1

2λ−λ2 ro(T ) as follows:

rs(T ) =
1

2λ − λ2

[

σ +
τ(k(1 − λ) + 1)

N

]

≥
1

2λ − λ2

[

σ +
τ(2 − λ)

N

]

=
1

2λ − λ2
ro(T ).

A.2 Proof of Theorem 2

Proof. Equation (7) follows directly from the definition of DirichletRank. Here
we only show the proof of Equation (8).
According to the definition of DirichletRank, we have

ds(T ) = σ +
1

1 + µ

∑

all B’s

ds(B) +
τ

N
(10)

ds(B) =
1

k + µ
ds(T ) +

τ

N
, for all bogus pages. (11)

Replacing ds(B) in (10) by (11) yields

ds(T ) = σ +
k

(1 + µ)(k + µ)
ds(T ) +

[

1 +
k

µ + 1

]

τ

N
.

By straightforward algebra, we have

ds(T ) =

[

1 +
k

µ2 + (k + 1)µ

][

σ +
k + µ + 1

µ + 1

τ

N

]

.

Observing that k
µ2+(k+1)µ > 0 and k+µ+1

µ+1 > 1, we have

ds(T ) > σ +
τ

N
= do(T ),
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and this proves (8).

A.3 Proof of Theorem 3

Proof. Let us assume that the ith bogus page has ni − 1 out-links to other
bogus pages and a link back to the target page. According to the definition of
DirichletRank, we have

d(T ) = σ +
k

∑

i=1

d(Bi)

ni + µ
+

τ

N
(12)

and each bogus page Bi has the score

d(Bi) =
d(T )

k + µ
+

∑

j:j→i

1

nj + µ
d(Bj) +

τ

N

where j → i denotes that Bj has a link to Bi.
Summing all d(Bi) together yields:

k
∑

i=1

d(Bi) =
k

k + µ
d(T ) +

k
∑

i=1

ni − 1

ni + µ
d(Bi) + k

τ

N

⇒

k
∑

i=1

(1 −
ni − 1

ni + µ
)d(Bi) =

k

k + µ
d(T ) + k

τ

N

⇒

k
∑

i=1

d(Bi)

ni + µ
=

k

(k + µ)(1 + µ)
d(T ) +

k

1 + µ

τ

N
(13)

Replacing
∑k

i=1
d(Bi)
ni+µ

in (12) by (13), we have

d(T ) =

[

1 +
k

µ2 + (k + 1)µ

] [

σ +
k + µ + 1

µ + 1

τ

N

]

.

Clearly this equation is independent of the values of ni, which proves Theorem 3.

A.4 Proof of Theorem 4

Proof. Let us assume T has n out-links and Bi has ni out-links where n, ni ≥ 0.
We also assume l out of n out-links of T and li out of ni out-links of Bi point to the
pages in the local structure: T or other B’s (0 ≤ l ≤ n, 0 ≤ li ≤ ni, and l, li ≤ k),
and others point to outside. According to the definition of DirichletRank, we have:

d(T ) = σ +
∑

i:i→T

d(Bi)

ni + µ
+

τ

N
(14)

We use → (9) to denote that there is (not) a link between two pages. For each
bogus page Bi, its score is

d(Bi) =

{

d(T )
n+µ

+
∑

j:j→i
d(Bj)
nj+µ

+ τ
N

if T → i
∑

j:j→i
d(Bj)
nj+µ

+ τ
N

if T 9 i
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Summing all the d(Bi) together yields:

k
∑

i=1

d(Bi) =
l

n + µ
d(T ) +

∑

i:i→T

li − 1

ni + µ
d(Bi)

+
∑

i:i9T

li
ni + µ

d(Bi) + k
τ

N
(15)

By splitting
∑k

i=1 d(Bi) =
∑

i:i→T d(Bi) +
∑

i:i9T d(Bi), Equation (15) leads to:

∑

i:i→T

(ni − li) + (1 + µ)

ni + µ
d(Bi)

=
l

n + µ
d(T ) −

∑

i:i9T

ni − li + µ

ni + µ
d(Bi) + k

τ

N

≤
l

n + µ
d(T ) + k

τ

N
(16)

Since li ≤ ni, we have

∑

i:i→T

(ni − li) + (1 + µ)

ni + µ
d(Bi) ≥

∑

i:i→T

1 + µ

ni + µ
d(Bi) (17)

Since l ≤ n and l ≤ k, we have

l

n + µ
d(T ) ≤

l

l + µ
d(T ) ≤

k

k + µ
d(T ) (18)

By combining inequality (16), (17), and (18), we obtain

∑

i:i→T

1 + µ

ni + µ
d(Bi) ≤

k

k + µ
d(T ) + k

τ

N

⇒
∑

i:i→T

d(Bi)

ni + µ
≤

k

(k + µ)(1 + µ)
d(T ) +

k

1 + µ

τ

N
(19)

Further replacing
∑

i:i→T
d(Bi)
ni+µ

in Equation (14) by the inequity (19) yields

d(T ) ≤ σ +
k

(k + µ)(1 + µ)
d(T ) +

k

1 + µ

τ

N
+

τ

N

⇒

[

1−
k

(k + µ)(1 + µ)

]

d(T ) ≤ σ +
k + µ + 1

1 + µ

τ

N

⇒ d(T ) ≤

[

1 +
k

µ2 + (k + 1)µ

] [

σ +
k + µ + 1

µ + 1

τ

N

]

.
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