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ABSTRACT

Search engine logs are an emerging new type of data that
offers interesting opportunities for data mining. Existing
work on mining such data has mostly attempted to dis-
cover knowledge at the level of queries (e.g., query clusters).
In this paper, we propose to mine search engine logs for
patterns at the level of terms through analyzing the rela-
tions of terms inside a query. We define two novel term
association patterns (i.e., context-sensitive term substitu-
tions and term additions) and propose new methods for
mining such patterns from search engine logs. These two
patterns can be used to address the mis-specification and
under-specification problems of ineffective queries. Experi-
ment results on real search engine logs show that the mined
context-sensitive term substitutions can be used to effec-
tively reword queries and improve their accuracy, while the
mined context-sensitive term addition patterns can be used
to support query refinement in a more effective way.

Categories and Subject Descriptors: H.3.1 [Content
Analysis and Indexing]: Linguistic processing; H.3.3 [Infor-
mation Search and Retrieval]: Query formulation, Search
process

General Terms: Algorithms

Keywords: Term association patterns, search log mining,
query reformulation

1. INTRODUCTION

As search engines are being used, they naturally accumu-
late a lot of log data, including submitted queries, viewed
search results, and clicked URLs. Such search engine logs
contain a lot of valuable information such as patterns of
query reformulation. In general, a Web search engine an-
swers millions of queries every day. Thus the huge amount
of search engine log data offers excellent opportunities for
data mining. Indeed, mining search engine logs has recently
attracted much attention [22, 16, 11, 1, 8, 25, 21]. All these
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studies have shown the promise of improving search accu-
racy through mining search engine logs. However, virtually
all the previous work has treated a whole query as a unit for
analysis; as a result, the discovered knowledge is mostly at
the level of queries. For example, clustering search queries is
studied in [26, 4]. The similarity of queries can be measured
by the clicked documents [26] or their temporal correlations
[6, 23]. Existing query suggestion works such as [19] and [12]
also consider a whole query as a unit and they further rely on
other resources such as Web snippets [19] or human-labeled
training data [12] to generate related queries. Furthermore,
most of the work only suggests “related” queries and does
not consider the effectiveness of the suggested queries, which
is very crucial for successful query suggestions.

In this paper, we look into patterns at the level of terms
through analyzing the relations of terms inside a query and
use the discovered term association patterns for effective
query reformulation. Our work is motivated from the fol-
lowing observations about what types of knowledge are use-
ful to help a user formulate an effective query. A query
is ineffective due to multiple reasons, but two of them are
common: mis-specification and under-specification.

(1) The mis-specification problem is caused by the fact
that there may be multiple ways of expressing the same idea
or describing the same thing, and a user may not know what
exact terms have been used by the authors of the documents
to be searched. This is also called “vocabulary mismatch.”
For example, if a user wants to find a place to wash his/her
vehicle, a good query would be “car wash”. If the user
uses a query such as “auto wash” or “vehicle wash”, the
search results are generally not as good as those from using
the query “car wash” even though all these queries have
roughly the same meaning. This is because in most relevant
web pages, the authors used “car wash” rather than “vehicle
wash” or “auto wash.” In order to help a user in such a case,
we need knowledge of the form “auto—car | - wash” (i.e.,
in the context “_ wash”, it is better to replace “auto” with
“car”). This is an example of what we refer to as a context-
sensitive term substitution pattern.

(2) The under-specification problem in a query may be
because the user does not know much about the content to
be found or can not naturally think of additional specific
terms. For example, a query such as “auto quotes” can
return mixed results with some about automobile insurance
quotes and some about automobile sale prices. In such a
case, it would be useful to suggest terms such as “insurance”
and “sale” for a user to choose so as to make the query more



discriminative. In order to do this, we need knowledge of
the form “+insurance | auto _ quotes” and “+sale | auto -
quotes” (i.e., in the context of “auto _ quotes”, “insurance”
and “sale” are possibly useful terms to refine the query at a
specified position). This is an example of what we refer to
as a context-sensitive term addition pattern.

In this paper, we first formally define the two novel term
association patterns in search logs — context-sensitive term
substitution and addition patterns. Then we propose new
probabilistic methods to discover these patterns through an-
alyzing term co-occurrences in query logs. Our basic idea
is to analyze the co-occurrences of terms within multi-word
queries in logs and obtain two kinds of term relations: (1)
quasi-synonyms and (2) contextual terms. Quasi-synonyms
are words that are synonyms (e.g., auto and car) or that
are syntactically substitutable (e.g., yahoo and google) [10].
Such terms tend to co-occur with the same or similar terms;
for example, both “auto” and “car” often occur together
with “rental”, “pricing”, etc. We propose to use probabilis-
tic translation models for capturing quasi-synonyms. Con-
textual terms are terms that appear together. For example,
“car” and “insurance” often co-occur in the queries and they
can help each other to refine a topic — “car insurance” can
be used to refine both “car” and “insurance”. We propose
to use probabilistic contextual models for capturing contex-
tual terms. Based on both translation models and contex-
tual models, we cast our context-sensitive term association
pattern mining as probability estimation problems. Pat-
terns with high probabilities are with high confidence and
then used for query reformulation. For example, “car” has a
high probability in the translation model of “auto” and high
probability to co-occur with “wash” in contextual models,
then the pattern “auto—-car|- wash” will have a high prob-
ability and thus is a pattern with high confidence.

To test the effectiveness of our proposed algorithms, we
conduct experiments on a sample of search logs. Experi-
mental results on the real search engine logs show that our
proposed methods can efficiently and effectively mine term
association patterns and all these patterns can be used for
effective query reformulation. These show that our proposed
methods can discover useful knowledge based on the term
relations inside queries. Our methods are totally orthogonal
to, and thus can be enhanced by, other techniques which
use other information such as click-through and user session
data for query suggestions.

The rest of the paper is organized as follows. We first re-
view the related work in Section 2. Then we formally define
our mining problem in Section 3 and propose our models to
discover term association patterns in Section 4. Our search
log data collection is described in Section 5 and the experi-
ments are presented in Section 6. Finally we conclude this
paper and discuss future work in Section 7.

2. RELATED WORK

Our work is highly related to query suggestion works such
as [19] and [12]. In [19], the similarity between two queries
are measured by their retrieved snippets from a search en-
gine. In [12], adjacent query pairs from the same user ses-
sions are used as candidates and machine learning algo-
rithms are used to categorize query pairs into 4 classes,
which reflect levels of relevance between two queries. The
main difference of our work is that we primarily discover
patterns in term level and use the discovered pattern to rec-

Queries Clicked URLs Time
hotel taxes in las vegas http://xxx.xxx.xxx/ XXXX
las airport NO CLICKS XXXX

las vegas airport http://xxx.xxx.xxx/ XXXX

http://xxx.xxx.xxx/ XXXX

Table 1: An example of user sessions

ommend more effective queries, while previous work does
not consider the effectiveness of a query and only focuses on
finding the generally related queries in the level of queries.
Furthermore, they always rely on external resources such as
a Web corpus or training data, while our methods only need
search logs.

Our methods to mining term association patterns are re-
lated to translation models for natural languages. Tradi-
tional translation models [5] are designed to learn trans-
lating word pairs of different languages (e.g., English and
French) based on the training data which, in general, con-
sists of translating sentence pairs. In this paper, our trans-
lation model between different words is based on the bridge
of their contexts. Based on similar ideas, there are several
related works, such as [13] and [10], which identify synonyms
or near-synonyms in text corpus. Our two types of term as-
sociation patterns are closely related to the syntagmatic and
paradigmatic word relations [17, 9]. The difference is that
our work is based on search logs and we further use them
for query reformulation.

Our work is also related to query modification work in
information retrieval community [20]. The study of query
modification can be traced back to the earliest relevance
feedback techniques such as the Rocchio method [18], in
which queries are modified based on the documents which
are judged to be relevant and irrelevant. When all the
top documents are irrelevant, negative feedback can be em-
ployed [24]. Pseudo-relevance feedback is to simulate rele-
vance feedback by assuming top ranked documents of an ini-
tial retrieval as relevant ones [27]. In [2], a system Prisma is
studied and it can recommend related terms and users can
narrow the search results by selecting appropriate related
ones to refine their queries. All these approaches depend
only on the original queries and their initial retrieved doc-
uments for query refinement. Our query reformulation al-
gorithms are based on the term association patterns mined
from many queries accumulated by search engines, thus in a
collective and collaborative way. Our methods rely on users’
past activities recorded in search logs to discover term asso-
ciation patterns and thus can reflect users’ preferences more
appropriately.

Our context-sensitive query rewording is also related to
the spelling correction [7] and context sensitive stemming [15].
But our method is to recommend a more appropriate word
to replace the original one, which is not necessarily a mis-
spelling or a stem. In this sense, our work can be regarded
as a “semantic” extension of previous works which rely on
“morphological” forms.

3. PROBLEM FORMULATION

Search engine logs record the activities of web users, which
reflect the actual general users’ need or interests when con-
ducting a search. Generally, search engine logs have the fol-
lowing information: text queries that users submitted, the



time when they searched, and the URLs that they clicked
after the queries. Search engine logs are separated by user
sessions. A user session includes several queries from the
same user for a coherent information need and the clicked
URLs for each query in the session. An example of user
sessions is shown in Table 1. In this paper, we focus on the
pattern inside queries in search logs and we formally de-
fine our problem of mining term association patterns in this
section.

DEFINITION 1 (QUERY). A query q of length n with vo-
cabulary V is an ordered sequence of terms [wiwa...wy],
where w; € V for all 1 < i < n. We use w € q if term
w is contained in q.

DEFINITION 2 (QUERY COLLECTION). A query collec-
tion Q consists of a bag of N queries: Q = {q1,q2,...,qn}.
The queries are not necessarily distinct from each other.

For example, all the queries submitted to a search engine
in a certain period of time form a query collection. A query
collection provides us data for mining term association pat-
terns. We now define two interesting patterns in search logs.

DEFINITION 3
A context-sensitive term substitution pattern is in the form
of [w — w'|cL_cr]. cr and cr are left and right context
words and this pattern means that term w should be substi-
tuted by term w' given a specific context.

DEFINITION 4  (CONTEXT-SENSITIVE TERM ADDITION).
A context-sensitive term addition pattern is in the form of
[+wl|cr-cr]. This pattern means that term w can be added
into the context cr,_cr and thus forms a new sequence cLwCR.

The defined term association patterns can be easily ex-
tended for query reformulation. We define two types of
query reformulation, query rewording and query refinement,
in the following and they are to address the mis-specification
and under-specification problems of an ineffective query re-
spectively.

DEFINITION 5  (QUERY REWORDING). Given a query q =
WLW2...Wn, query rewording is to modify the query by replac-
ing one term w; in q by its semantically similar term s, thus
form a new query ¢’ = w1...wi—1, 8, Wit1...Wr, .

DEFINITION 6  (QUERY REFINEMENT). Given a query q =
WIW2...Wn, query refinement is to modify the query by adding
one semantically related term r to q before a position i, thus
form a new query ¢' = wi...wi—17W;... W, .

It can be seen that query rewording and query refinement
correspond to context-sensitive term substitution and term
addition patterns respectively. In practice, query rewording
and refinement involve multiple terms. We only consider
single terms in the consideration of complexity.

4. TERM ASSOCIATION PATTERN
MINING FROM SEARCH LOGS

In this section, we first define two basic types of relation-
ship between a pair of terms: syntagmatic and paradigmatic
relation [17], which correspond to our contextual and trans-
lation models respectively. We then describe our term as-
sociation mining approaches based on these two models. In
the following, we use ¢(z, X) to represent the count of z in
collection X.

(CONTEXT-SENSITIVE TERM SUBSTITUTION).

4.1 Contextual and Translation Models
4.1.1 Contextual Models

Our contextual models are designed to capture syntag-
matic relations between terms. The syntagmatic relation
is for those terms which frequently co-occur together. For
example “rental” has a stronger syntagmatic relation with
“car” than the word “basketball” since “rental” co-occurs
with “car” more frequently in queries. In general, semanti-
cally related terms have stronger syntagmatic relation. This
type of knowledge is very useful for query refinement. We
first define term contexts.

DEFINITION 7 (TERM CONTEXTS). Given a query col-
lection Q and a term w, we have several different types of
contexts for w.

General Context G is a bag of words that co-occur with w
i Q. That is, a € G & Jg € Q, s.t. a €q and w € q.

The i-th Left Context L; is a bag of words that occur at
the i-th position away from w on its left side in any q € Q.

The i-th Right Context R; is a bag of words that occur at
the i-th position away from w on its right side in any q € Q.

For example, given that a query “national car rental” ap-
pears in the query collection, “national” and “rental” are in
the general context G of “car”; only “national” is in the L
and only “rental” is in the R; of “car”. L, and R; are more
precise contexts for each term. In the following, given a type
of context C, we use C(w) to represents w’s C context.

Our contextual models are to capture the syntagmatic
relations probabilistically. Given a term w, different terms
have different strength of syntagmatic relation with w. We
thus model this relation probabilistically and adopt language
model approaches here: Given a word w and its context
C(w), the contextual model is a uni-gram language model.
The Maximum Likelihood estimation (ML) is

c(a, C(w))
22 e, C(w))”
Intuitively, a context model tells us what words have high
probabilities to appear around a given word w (or at a spe-
cific position).

Smoothing techniques are usually used for language mod-

els due to the data sparseness problem. An effective ap-
proach is Dirichlet prior smoothing [28]:

c(a, C(w)) + pP(alfs)
22 (i, C(w)) +

where P(a|0p) is a predefined reference model (usually set as
the whole collection language model) and p is the Dirichlet
prior parameter to be set empirically (3000 in our experi-
ments). Note that we use Po(-|w) and Po(-|w) to represent
the smoothed and non-smoothed contextual models of w re-
spectively.

4.1.2 Translation Models

Our translation models are designed to capture paradig-
matic relations between terms. The paradigmatic relations
capture words which are quasi-synonyms (e.g., “car” and
“auto”). Our translation models are built on contextual
models. The basic idea is that two terms have stronger
paradigmatic relation if they have similar contexts. For

example, “car” and “auto” may share a lot of contextual

Pc(alw) =

I:’c(a|w) =



words such as “sales” and “insurance” and thus have strong
paradigmatic relation. This type of knowledge could be very
useful in helping a user replace a query term (with a poten-
tially better term) in a certain context.

In our translation model, we use ¢(s|w) to denote the prob-
ability of “translating” w to the word s. In the language
modeling approach, we use the Kullback-Leibler divergence
(KL) D(-]|-) between two contextual models to measure the
similarity between two contexts. Given two language models
p and ¢, their KL-divergence is defined as

D(pllq) = ;p(U) log %-

The KL-divergence value is smaller if p and ¢ are similar. We
use KL-divergence on contextual models to define tc(s|w)
as follows:

exp(~D[Pe (1)1 P (fw))
>s exp(=D[Pc(:|s)||Pe(|w)])
After a few transformations, it can be seen that

to(slw) o [ Po(ulw) <)

w

te(slw) =

which is the likelihood of generating s’s context C(s) from
w’s smoothed contextual model. The above formula can be
applied on any type of contextual models. For example, we
can use contexts GG, Li, or Ri. In this paper, we use a
combination of Ly and R; contexts since these two are most
indicative of the word in consideration:

sy — L) Xt ) & R )]ty sf)

|L1(w] + Ry (w)]

where | L1 (w)| (|R1(w)]) is the total number of terms occur-
ring in the L1 (R1) context of w.

4.2 Mining Term Substitution Patterns

The context-sensitive term substitution patterns give us
knowledge about query rewording. Recall that query re-
wording is to substitute a term w; in ¢ to be s and thus
we get another query ¢ = wy..w;_15Wiy1...w,. The new
query ¢’ should have similar/related meaning to q. A good
substitution should require that ¢’ is better than g to re-
trieve more relevant documents. In other words, s is more
appropriate than w; to capture the information need given
the context words in the query. For example, “car wash” is
generally better than “auto wash” in the context “_wash”.

4.2.1 Basic Approaches

In order to discover term substitution patterns, the prob-
ability we are interested in is: substituting the i-th posi-
tion word w; by s given the context wi...wi—1 Wiy1...Wn:
P(s|ws; wr...wi—1 wig1...wyn). We use a shorthand t(w; —
s|q) to represent this probability. Then

t(w; — s|q) P(s|wi; wy...wi—1-Wit1...wn)

P(wi; wi...wi—1 Wit1...wn|s)P(s) )
t(w;|s)P(s)P(w1...w;—1 Wit1...Wn|s)
t(s|w;)P(wi...w;—1-Wiy1...wn|s)

IR

In Equation 2, each substitution candidate s is scored
based on two factors: The first factor ¢(s|w;) reflects the
similarity between the word w; and the candidate s. This
is a global factor which tells us how globally similar these
two words are. The second factor P(w1...w;—1-Wit1...wn|s)

is the local factor based on other context words in the query
q. It tells us how likely s appears in such a context defined
by q. These two factors are combined together to score each
candidate in our method. To estimate the second factor, a
simple approach is assume the context words are indepen-
dent from each other given s. Using the general context G,
we have
n ~
P(w1...w;—1 Wig1...wn|8) = H Pa(wjls)
J=1g#

The general context ignores the position information and
also considers all the words in context. In general, a word
far away for the position in consideration should have lower
impact. We thus use the more precise contextual models L;
and R; and ignore those words which are far away:

k k
H PLi—j (wi*j|8) X H PL'H»j (wi+j|s) (3)
J=1,i—j>0 j=1,i+5<n

where k is the number of adjacent terms to consider. For
example, if we set k = 2, we have P(w1...Wi—1-Wit1...Wn|S)
as

Pry(wi—2|s)Pr, (wi—1|8) Pr, (wit1]5) Pry (wiyals).  (4)

Note that we always use smoothed contextual models in the
above formulas. To make the distributions at different po-
sition i comparable, we use n-th root of the value in Equa-
tion 3 and n is the total number of factors in the product.

4.2.2 Estimation Enhanced by User Sessions

For term substitutions, we need a reliable translation model
t(s|w). However, estimating ¢(s|w) based only on contextual
models need to be limited to ensure that s and w are seman-
tically similar. For example, “American idol” and “Ameri-
can express’ are two popular queries. Thus the same word
“American” can show up in the Li contexts of “idol” and
“express” frequently; as a result, we will have a high trans-
lation probability of ¢(express|idol), which is not desirable.
To improve the translation models, we rely on the user ses-
sions in our search logs (see an example in Table 1). Since
queries in a user session are usually coherent, we would ex-
pect “idol” and “express” would not appear in the same
sessions very often.

We use Mutual Information (MI) of the two words s and
t over sessions to measure their correlation. MI is widely
used to measure the mutual independency of two random
variables in information theory, which intuitively measures
how much information a random variable tells about the
other. In our case, MI can be computed as follows:

P(Xs, Xw)
P(Xs, Xw)log ———~. 5
XMX;{OJ} (X, Xu)loe ey Py ©)

I(s,w) =

where X and X, are two binary random variables corre-
sponding to the presence/absence of term s and term w in
each user session. For example, P(X, = 1, X, = 1) can be
calculated as the proportion of the user sessions in which s
and w are both present.

To make MI comparable across different pairs of words,
we use a normalized version of MI in our paper, which is
defined as

NMI(s,w) = ——= (6)



It is easy to verify that NMI(w,w) =1and 0 < NMI(s,w) <

1.

For our term substitution pattern mining, we combine
t(s|ws) and NMI(s,w;) as follows:

(1) Given g and w;, we use t(s|w;) to find the top N words
which have the highest probabilities in t(s|w;).

(2) For each of these N words, we calculate its NM I with
w; using session information.

(3) We use a threshold 7 to remove a word s from the N
words if NM1(s,w;) <.

In our experiments, we set N = 20 and 7 = 0.001. Since
all the remaining words have high translation probabilities
and frequently co-occur with w in user sessions, they are
more reliable and we thus set all ¢(s|lw;) = 1 for those
remaining terms and compute ¢(w; — s|g) only based on
Equation 3. To decide when we need to replace w; by s, we
use % as an indicator. For example, if this value is
larger than 1, we would recommend to replace w; by s.

A query may contain multiple words and any one of them
can be potentially replaced /reworded. In an interactive man-
ner, a user can tell the system which term he/she wants to
replace. In an automatic manner, our general strategy is to
iterate all the words and try to replace each of them. Then
we get a set of candidates which differ from the original
query by one term. Each of these candidates has a prob-
ability computed by Equation 3. We finally sort all these
candidates by their corresponding probabilities and recom-
mend the top ranked ones as substitutions.

4.3 Mining Term Addition Patterns

A term addition pattern [+w|cr-cr] is to add a word
w given the context cr_cr. Formally, given a query ¢ =
wiwa...wn which contains n words and a position ¢, our task
is to recommend a term r which can be added to the original
query to form a new query q' = wi...w;—17W;...wn. We for-
malize this problem in a probabilistic way and we use v;(r|q)
to denote the probability of a pattern [+r|w1...w;—1 w;...wy].

vi(rlg) = P(rlwi..wi—1-w;...wy)
x  P(wy...wi—1-w;.. wn|r)P(r)
P(w1...w;—1 w;...wn|r) can be estimated similarly to the es-

timation of the local factor in Equation 2. Here we estimate
it similarly to Equation 3 as follows:

k k—1
H PLi—j (wi*jh") : H PLi+j (wiJrj'T) (7)
j=1,i—5>0 j=0,i+j<n

P(r) is the prior probability of the appearance of the term
r. In the simplest case, we can assume P(r) to be uniform
thus it will not affect the ranking of different terms.

Intuitively, the terms which have higher probabilities to
be added to g are those which co-occur frequently in the
query collection together with the words in gq. Each word
will be assigned a probability based on Equation 7 and we
then rank all the terms.

Given query ¢ = wj...wn, there are n + 1 positions in
which we can add a term. In our experiments, we iterate
over all these positions and get a list of new query candidates
for position i. Each query has a corresponding probability
estimated from ~;(r|g). A final list of the recommended
queries is the ranked list merged from queries for all the
positions.

S. DATA COLLECTION

We construct our data set based on the MSN search log
data set released by the Microsoft Live Labs in 2006 [14].
Our log data spans 31 days from 05/01/2006 to 05/31/2006.
In total, there are 8,144K queries, 3,441K distinct queries,
4,649K distinct URLs, and 7,470K user sessions in the raw
data.

We separate the whole data set into two parts according
to the time: the first 2/3 data is used to simulate the history
data and it is used as a query collection to mine the term
association patterns. The queries in the last 1/3 data are
retained to test our methods. In the history collection, we
clean the data by only keeping those well-formatted English
queries (queries only containing characters from ‘a’ to 'z’
and space). We also use a predefined stopword list to remove
those common words such as “a” and “the” from our query
collection. After cleaning, we get 4,431,152 queries in our
query collection in total and 1,577,424 of them are distinct.
The total number of unique words contained by the queries
in this collection is 199,629 and the media length of the
queries is 2. This data set is used in our experiments to
compute the contextual models and translation models. For
the user sessions, we obtain 3,540K in total and 1,320K of
them have at least two queries in our training data. We
use these 1,320K user sessions to compute the normalized
mutual information between two terms.

Based the queries in our query collection, we build G, L2,
L1, R1, and R2 contexts for the 76,693 most frequent words
in the collection. All the contexts provide us the statistics of
the necessary probabilities needed in our contextual models.
Furthermore, we also compute the words which have high
translation probabilities to each of the 76,693 words and thus
build their translation models. All the contextual models
and translation models are stored for online query rewording
and query refinement.

6. EXPERIMENTS

In this section, we describe our experiments on mining
term association patterns from the search engine logs. In
all the following experiments, we set smoothing parameter
= 3000 and k = 2 in Equation 3.

6.1 Contextual and Translation Models

In Table 2, we show the G, L1 and R; contextual mod-
els of two words: “car” and “yahoo”. From this table, we
can see that all the contextual models in this table appear
to be meaningful. We can also see that G contexts mix
L1 and R; contexts and that L; and R contexts are much
different. This shows it is better to model these precise
contexts for a given term in our query collection. Further-
more, these contextual words may cover different aspects.
In Table 3, We show the results of the discovered aspects of
“car” and “yahoo”. The aspects are obtained by applying
the star clustering [3] on the top words in the G contextual
models (see [3] for more details) and we show the top 5 clus-
ters. Clearly, for the word “car”, people usually care about
“rental” and “pricing”. In the example of “yahoo”, people
are interested in “search”, or “games”. All these aspects
correspond to different information needs of end users and
thus can be potentially used for search result organization
and query refinement.

We now show several examples of our translation models
using Equation 1. In Table 4, we give 6 different terms



w=car w=yahoo
a | Pg(ajw) ] a | Pr,(afw) | a | Pgr, (a]w) a | Pg(ajw) ] a | Pr,(afw) | a | Pgr, (a]w)
rental 0.152 rent 0.1187 rental 0.1937 mail 0.4806 sbc 0.5853 mail 0.5316
rent 0.046 rental 0.0892 rentals 0.0517 games 0.0672 verizon 0.0366 games 0.073
rentals 0.0318 national 0.0656 seat 0.044 maps 0.0459 mail 0.0327 maps 0.0506
enterprise 0.0306 classic 0.0451 audio 0.0403 finance 0.0402 launch 0.0274 finance 0.0444
national 0.0301 enterprise 0.0396 dealers 0.0312 music 0.0354 sign 0.0228 music 0.0384
prices 0.0271 race 0.0257 insurance 0.031 sbc 0.0331 email 0.015 personals 0.0259
audio 0.0246 budget 0.0237 wash 0.0275 personals 0.0234 chat 0.0124 email 0.0213
budget 0.0197 alamo 0.0235 max 0.0251 email 0.0206 download 0.0124 messenger 0.0157
insurance 0.0192 electric 0.0182 sales 0.0246 messenger 0.0157 games 0.0111 sports 0.0138
dealers 0.0191 hertz 0.0169 loan 0.0203 sports 0.0136 weather 0.0111 chat 0.0133
Table 2: Examples of the contextual models for “car” and “yahoo”.
w=car w=yahoo ( Pattern | Reworded query ||
buy, prices, values search, people, address auto—car |_ wash car wash
rental, rent, alamo news, sports, photos car—auto |_ trade auto trade

audio, stereo, speakers online, games, word

accidents, crashes videos, music, video

G | R o) =
G | R o) =

loans, calculator, payment messenger, instant, im

Table 3: Aspects for words “car” and “yahoo”.

Translation Model Mutual Information

Table 5: Translation model and Normalized Mutual
Information of w = “idol”.

from different domains and their translation models. For
each term example, the top 5 words with highest translation
probabilities are shown. We can seen that our proposed
translation models are very effective to identify semantically
similar words. For example, “fox”, “abc”, and “cnn” are
all related to broadcast companies; “bmw”, “honda”, and
“suzuki” are motorcycle/car brands. It is also interesting to
note that words about different languages and words about
different minerals can be identified to be similar. All these
show the effectiveness of our proposed translation models to
identify ‘related words”. All these terms provide possibility
for users to do exploratory search.

6.2 Term Substitution Patterns

In this section, we study the effectiveness of our term sub-
stitution patterns. We first show several examples. We then
compare our methods with previous methods to show that
our method can improve the effectiveness of a query.

In this section, we enhance our translation models using
user session information. Table 5 show an example. It can
be seen that the words reranked using Normalized Mutual
Information can indeed reduce those non-related words.

6.2.1 Examples of Substitution Patterns

We show several substitution patterns on query reword-
ing. We decide to reword a query if the ratio % > 1,
which means that s is more likely than w given query q.
Table 6 shows several examples of the patterns (1st col-

umn) and the reworded queries by our method (2nd col-

children—kids | games kids games

kids—-children |_ clothing children clothing

driving—maps | google_ google maps

military—army |_ acu army acu

birthday—greeting |_ cards greeting cards

lotto—lottery | florida _ results florida lottery results

interpretation—meanings | _ of dreams | meanings of dreams

song lyrics

P t(s|w) 3 NMI(s, w) music—song |_ lyrics
idol 0.0149626 idol 1 s
express | 0.00305314 idols 0.00270233 Table 6: Examples of term substitution patterns.
airlines | 0.00207636 top 0.000339295
inventor | 0.00195964 || medical | 0.000206774
haunting | 0.00194115 west 1.70E-04 umn). From the table, we have the following observations:

(1) Our method can recommend more effective queries. For
example, “kids games” is usually more effective than “chil-
dren games”. (2) Term substitution patterns are context-
sensitive. For example, we substitute “auto” by “car” in
the context “_ wash”, while we substitute “car” by “auto”
in the context of “_trade”. (3) We can see that queries from
our methods are related to the original ones, but their mean-
ings are not exactly equivalent (e.g., “birthday cards” and
“greeting cards”). This is because translation models tend
to find words with similar concepts but not always having
the exactly same meanings, in general.

6.2.2 Effectiveness Comparison |

In this section, we study the effectiveness of query reword-
ing by comparing with a previous method proposed in [12].

Experiment Design. In [12], related queries are gen-
erated according to user sessions. For each query, they
first find all its next queries in all user sessions and use
Log-Likelihood Ratio (LLR) to identify those highly related
queries. Then they rerank the queries based on a model
learned from training data. In our paper, we use their lin-
ear regression model for reranking and use LLR to denote
this method. The LLR method gives a ranked list of queries.
Some of the resulting queries is query rewording, but they
also contain other types of query reformulation such as query
refinement. To compare fairly, we filter the ranked list and
only retain those queries which are rewording of the original
queries.

To compare different methods, we construct our test cases
from our hold-out logs as follows:

1) We merged all the sessions which have the same initial
queries together as one test case.

2) For each test case, we use all the clicked URLs, ex-
cept those of the initial query, in all the merged sessions



w=fox w=bmw w=computer w=leg w=chinese w=calcium
s t(s|w) s t(s|w) s t(s|w) s t(s|w) s t(s|w) s t(slw)
fox | 0.0024 bmw 0.00195 || computer | 0.00155 leg 0.00571 chinese 0.0027 calcium 0.01034
cbs | 0.00035 honda | 0.00019 || computers | 0.00014 [| abdominal | 0.00024 || japanese | 0.00011 sodium 0.00037
cnn | 0.00034 suzuki | 0.00017 laptop 0.00011 stomach 0.00024 korean 0.0001 potassium | 0.00035
abc | 0.00032 || yamaha | 0.00017 pc 0.00009 legs 0.00024 italian | 0.00009 || magnesium | 0.0003
bbc | 0.0003 || triumph | 0.00017 || notebook | 0.00009 muscle 0.00019 greek 0.00009 || cholesterol | 0.00023

Table 4: Examples of translation models of 6 different terms.

to approximate relevance documents. These documents are
to approximate relevant documents which users obtained
through query reformulation. Our purpose is to compare
different methods with respect to fetching additional rele-
vant documents.

Given the test cases constructed above, we compare 3
methods: The first method (denoted by Original query) is
to use the initial/original queries to get a ranked list from
a search engine. The second method is the LLR method in
[12] and the third is ours. For either of these two methods,
we first generate a list of recommended queries. We then
fetch a ranked list of search results for each of the queries
from the same search engine. Finally we use our relevance
judgement to evaluate these different search results.

Our goal is to test which method can recommend more
effective queries. Since both our and LLR methods can not
generate recommended queries for every query, we thus filter
the test cases and only retain those for which both LLR and
our method can generate at least 5 queries and for which the
first generated queries by our method satisfy % > 1.
This is to simulate the scenario in which the first query is
not very effective since it is precisely in such a scenario that
a user would need help with reformulation. From all the
remaining test cases after filtering, we randomly sample 50
test cases for our evaluation.

We use Precision@5 (P@5) as our evaluation metric. Given
m recommended queries for each test case, we select the best
one which has the largest number of relevant documents in
its top 100 search results and use its P@5 as the accuracy
of the corresponding test case.

Results. We vary the number of recommended queries
m from 1 to 5 and the best P@5 values are shown in Fig-
ure 1. From this figure, we can see that both our method and
LLR outperform original query and thus can recommend
more meaningful queries. Compared with LLR method, our
method is more effective. For example, when we only con-
sider the first recommended query, our method can give P@Q5
= 0.08 while LLR method can only give P@5 = 0.05. This
is because LLR method does not consider the effectiveness
of a query while our method would recommend a more ef-
fective one based on the term substitution patterns mined
from search logs. For example, our method can recommend
“cheap tickets” for “cheap airfare”, while LLR only suggests
queries such as “discount airfare”, which is not as effective
as “cheap tickets”.

6.2.3 Effectiveness Comparison Il

In this section, we study the effectiveness of our method
for queries with the same meanings. In order to ensure that
the recommended queries have the same meanings as the
original ones, we propose a lexical matching constraint for
the translation pairs.

Original query
LLR method ----+----
Our method -+

0.12 J

0.14 |

0.1

008t ]

Best P@5
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0.04 | 1
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0 1 1 1
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Figure 1: Comparison of term substitution patterns.
We compare the best P@5 of the top m recom-
mended queries by different methods.

translation pairs
plural/singular abbreviation others
map maps dept | department hair | hairstyles
page pages tx texas space myspace
code codes tv television pics pictures
number | numbers co company fish fishing
loan loans st saint air airlines

Table 7: The categories and examples of translation
pair after applying lexical matching constraint.

Lexical Matching Constraint.Given a word w, we first
get its top 3 words with the highest probabilities based on
its translation model. This gives us 3 translation pairs. Our
lexical matching constraint only retains those pairs such that
every character in the short word of the pair must appear
in the long word, in the same order. For example, “tx” and
“texas” are a qualified pair since “t” and “x” both appear
in “texas” and “t” is before “x” in both words. By apply-
ing this lexical matching constraint, we can hopefully get
semantically equivalent pairs.

Table 7 shows several examples of the identified pairs
after applying our lexical matching constraint. We found
that the results can be classified into three categories: plu-
ral/singular, abbreviations, and others.

Using the translation pairs filtered by our lexical matching
constraint as candidate pairs, we apply our query rewording
algorithm on a set of queries sampled from our test data.
Each of these queries ¢ contains at least a word w from
our candidate pairs and our rewording algorithm tries to
replace w with its paired word s. If the ratio % > 1,
we reword g by replacing w by s. Finally, we rewrite 1,437
queries.




| Original query | New query | Ratio |
maps quest map quest 358.571
sams clubs sams club 264.500
white page white pages 149.027
six flag six flags 39.2353
aol email aol mail 31.7024
continental air continental airlines | 21.2667
hair pics hair pictures 20.0000
lotto tx lotto texas 16.4815
window media windows media 14.4026
yahoo map yahoo maps 7.96296

Table 8: Examples of context-sensitive query re-
wording using the pairs filtered by our lexical match-
ing constraint.

Table 8 shows several examples of our query rewording,
ordered by their ratios. In this table, we can see that some
queries are changed from singular to plural form, while some
queries are changed from plural to singular form. All the
changes are context sensitive. For example, our algorithm
changes “yahoo map” to “yahoo maps” (from singular to
plural), but changes “maps quest” to “map quest” (from
plural to singular). Intuitively, our reworded queries are
more effective since the domain names of these two queries
are maps.yahoo.com and mapquest.com. A recent work [15]
has reach similar conclusion that context-sensitive stemming
can improve click-through rate. Our results are consistent
with this conclusion.

Effectiveness Experiment Design. To study the ef-
fectiveness of query rewording, we use the clicked web pages
in our search engine log data to evaluate. Given a query, we
collect all the positions of its clicked documents in our test
log data and aggregate all these clicks together. We treat all
the clicked positions as the positions of relevant documents
in a ranking list and evaluate and compare the accuracy of
the original queries and our recommended queries. Since
we use our lexical constraint to force all the pairs to share
equivalent meaning, comparing their results to show their
effectiveness is reasonable. Intuitively, a better query would
retrieve more relevant documents on the top of the ranked
list that users tend to click. In our experiments, for each
query, we calculate the precision at 1, 5, 10, 15, and 20
documents.

Effectiveness Results. Figure 2 shows the comparison
between the original queries and the reworded queries. The
precisions are averaged over all the queries that our algo-
rithm decides to rewrite. Clearly, we can see that, at ev-
ery level of precision, our recommended queries can retrieve
more relevant documents and thus outperform the original
queries. For example, the PQ10 of our recommended queries
is 0.42, while the P@10 of the original queries is about 0.28.
We achieve 41.3% relative improvement.

The ratio % can be regarded as a confidence score
of our query rewording. A high ratio means that the re-
worded query is more appropriate than the original query.
To test this, we ordered the query pairs by the ratio in de-
creasing order and we then evaluate the accuracy of top m
pairs by varying m from 100 to 600. Figure 3 shows the influ-
ence of ratio and the difference is measured by the quotient
of P@10 of recommended queries over original ones. From
this figure, we can see that when the ratio is higher, the
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Original queries —+—
New queries -

Precision@K
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Figure 2: The overall performance comparison of
the original and rewritten queries. We compare
their results by Precision@K.
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top m pairs ordered by ratio

Figure 3: The impact of the ratio on the perfor-
mance. The Difference of P@10 is measured as the
quotient of P@10 of recommended queries over orig-
inal ones.

performance difference is larger. This means that the ratio
is a good indicator of the confidence of query rewording.

6.3 Term Addition Patterns

In this section, we study our context-sensitive term addi-
tion patterns and use them for query refinement.

6.3.1 Examples of Addition Patterns

Table 9 shows several examples of the mined term addition
patterns and the refined queries based on Equation (7). For
each query, all the patterns are ordered by their probabilities
in decreasing order. These examples show that our method
can recommend very meaningful terms to refine an origi-
nal query. For example, for the query “wedding”, we can
recommend meaningful terms related to different aspects of
“wedding”, such as “dresses” and “cakes”. All these terms
can help users refine their queries and thus find more coher-
ent results. Furthermore, all these terms give good guidance
for a user when he/she wants to prepare a “wedding”. Such
a recommendation is more useful if a user is not satisfied



q =“song lyrics”

q =“baby names”

q =“wedding”

pattern

refined query

pattern

refined query

pattern

refined query

+christian|__song lyrics
+country|-song lyrics
+gospel|__song lyrics
+love|-_song lyrics
+spanish|__song lyrics
+search|song lyrics_-
+worship|-_song lyrics
+search|song__lyrics
+praise|__song lyrics
+search|__song lyrics

christian song lyrics
country song lyrics
gospel song lyrics
love song lyrics
spanish song lyrics
song lyrics search
worship song lyrics
song search lyrics
praise song lyrics
search song lyrics

+boy|baby_names
+girl|baby_-names
+popular|__baby names
+meanings|baby names__
+girl|__baby names
+unusua1|__baby names
+unique|--baby names
+irish|__baby names
+italian|__baby names
+twins|baby names__

baby boy names
baby girl names
popular baby names
baby names meanings
girl baby names
unusual baby names
unique baby names
irish baby names
italian baby names
baby names twins

+dresses|wedding -
+cakes|wedding -
+invitations|wedding -
+songs|wedding__
+favors|wedding__
+flowers|wedding—
+gowns|wedding -
+rings|wedding__
+toasts|wedding__
+vows|wedding_-

wedding dresses
wedding cakes
wedding invitations
wedding songs
wedding favors
wedding flowers
wedding gowns
wedding rings
wedding toasts
wedding vows

Table 9: Examples of term addition patterns. All the patterns are ordered according to their probabilities

in decreasing order.
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Figure 4: Comparison with the LLR method of term
addition patterns.

with the current results but lacks the necessary knowledge
to think of effective words to refine his/her query.

6.3.2 Effectiveness Comparison

We compare our method with LLR method in a similar
way as in Section 6.2. We use the same test set and construct
our test cases similarly. The only difference is that we only
retain those recommended queries which are refinements of
the original queries for the LLR method. We also use 50 test
cases in this experiments and use P@5 as the major evalu-
ation metric. Figure 4 shows the comparison between dif-
ferent methods. In this figure, we have similar observations
to the term substitution patterns: Both our and LLR meth-
ods can outperform the baseline method. Compared with
LLR method, our method can achieve better results. This
is because LLR method only consider the query refinement
within user sessions. Our method can utilize information
across sessions since our contextual models are built over
the whole collection.

6.4 Implementation and Efficiency

The efficiency of the algorithm is quite important since a
query collection is huge. We test the efficiency of our method
in this section.

We implement our algorithm using the Lemur toolkit!.
The original data is a collection of queries. We build the
standard Lemur index by treating each query as a document.
This part is as efficient as the standard document indexing,

"http://www.lemurproject.org/
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Figure 5: The time complexity of building the con-
textual models and translation models.

thus it can be applied to very large data set pretty easily.
The basic knowledge we discovered from the query collec-
tion includes the contextual models and translation models.
Both are processed offline based on the Lemur index of the
query collection. Based on the translation models and con-
textual models, the context-sensitive term substitution and
term addition patterns are discovered in an online manner.
Once the knowledge is built, the online part needs only fetch
the corresponding knowledge we stored, and thus can be
quite efficient. Since all the online parts are very efficient,
in the following, we only test the efficiency of the offline part
which is to compute the contextual models and translation
models.

To study the efficiency and scalability, we randomly sam-
ple f% of the original queries from the whole query collec-
tion. We vary f from 10 to 100 with step 10. For each
value of f, we record the time needed for our offline part.
Figure 5 shows the time complexity of our algorithms. In
this figure, z-axis is the value of f% and y-axis is the time.
It can be seen that both lines are roughly linear and thus
our offline part is linearly scalable. This shows that our pro-
posed methods can mine those patterns very efficiently and
can be applicable to very large query collections.

7. CONCLUSIONS AND FUTURE WORK

In the paper, we studied the problem of mining term as-
sociation patterns from the vast amount of search engine
log data. We defined two novel term association patterns
(i.e., context-sensitive term substitution and term addition




patterns) and proposed new methods for mining such pat-
terns from search engine logs. Our methods are based on the
contextual and translation models which are mined from a
query collection. The two types of discovered term associ-
ation patterns can be used to address the mis-specification
and under-specification problems of ineffective queries. Ex-
periment results on search engine logs show the effectiveness
of our proposed methods.

There are a few limitations of our work. First, all the
experiments are based on clickthroughs instead of real rel-
evance judgments, so an interesting future work would be
to further test the proposed methods with real relevance
judgments. Second, building an interactive user interface
which can allow a user to modify his/her queries using our
suggested terms can help evaluate our algorithms. Third,
search logs have more meaningful click-through information
besides queries and sessions. We can extend our pattern
mining algorithms to incorporate this click-through infor-
mation in the future.
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