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ABSTRACT

Heterogeneous entities or objects are very common and are
usually interrelated with each other in many scenarios. For
example, typical Web search activities involve multiple types
of interrelated entities such as end users, Web pages, and
search queries. In this paper, we define and study a novel

problem: Search Heterogeneous INterrelated Entities (SHINE).

Given a SHINE-query which can be any type(s) of entities,
the task of SHINE is to retrieve multiple types of related
entities to answer this query. This is in contrast to the tra-
ditional search, which only deals with a single type of en-
tities (e.g., Web pages). The advantages of SHINE include:
(1) It is feasible for end users to specify their information
need along different dimensions by accepting queries with
different types. (2) Answering a query by multiple types of
entities provides informative context for users to better un-
derstand the search results and facilitate their information
exploration. (3) Multiple relations among heterogeneous en-
tities can be utilized to improve the ranking of any particular
type of entities. To attain the goal of SHINE, we propose
to represent all entities in a unified space through utilizing
their interaction relationships. Two approaches, M-LSA and
E-VSM, are discussed and compared in this paper. The ex-
periments on 3 data sets (i.e., a literature data set, a search
engine log data set, and a recommendation data set) show
the effectiveness and flexibility of our proposed methods.

Categories and Subject Descriptors: H.3.1 [Content
Analysis and Indexing]: Indexing methods; H.3.3 [Informa-
tion Search and Retrieval]: Search process

General Terms: Algorithms, Design

Keywords: SHINE, heterogeneous interrelated entities, mul-
tiple types, search

1. INTRODUCTION

Heterogeneous interrelated entities or objects are common
in many scenarios. For example, general Web search ac-
tivities involve heterogeneous objects including end users,
search queries, Web pages, and words. In literature data,
four types of heterogeneous entities are included: authors,
papers, conferences, and keywords. All the inter-relationships
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among these heterogeneous objects provide rich information
to build potentially better search services. However, most of
current search services only deal with a single type of objects
(e.g., Web pages) and are limited in both query capabilities
and search result richness. For example, in the traditional
Web search, end users can only specify their information
need by a string of query terms and only a ranked list of
pages are returned as search results. Although most search
engine users have been trained to become accustomed to
this traditional method, several drawbacks are still needed
to be addressed in order to better satisfy users’ information
needs. For example, in some cases, a user who needs help to
formulate a better query may want to know “what are the
possible words for me to refine my queries” or “what are the
related queries other users submitted for similar needs?” In
other cases, a Web master/advertiser is more curious about
“what are the related pages to my page” or “what are the
queries which are submitted by end users and related to my
page?”’ For a literature search, a researcher may want to
find papers of particular topics published in particular con-
ferences or published by particular authors. A novice may
want to know the prestigious conferences or experts of a re-
search topic such as “Web search”. In all these situations,
we see keen needs from a user’s perspective to extend both
query capabilities and search result richness.

Fortunately, the rich information among heterogeneous in-
terrelated objects provide feasibility to satisfy users’ diverse
information needs. In Figure 1, we show the interactions
among heterogeneous entities: users, queries, Web pages,
and words as following: users interact with queries by issu-
ing; queries interact with Web pages by referencing; Web
pages interact with words by containing; and so on. By
leveraging all the interactions among heterogeneous entities,
in this paper, we define and study a novel search problem:
Search Heterogeneous INterrelated Entities (SHINE) to ex-
tend and generalize traditional searches. Specifically, to ex-
tend query capabilities, a SHINE-query can be any combi-
nations of entities in multiple types. To extend search result
richness, SHINE retrieves and returns all types of heteroge-
neous entities. For example, given a SHINE-query such as
“xbox” with the type of word, the search results of SHINE
consist of relevant users, Web pages, text-queries, and re-
lated words. On the other hand, a user can input a Web
page such as www.xbox.com as a SHINE-query to get rele-
vant results consisting of all the four types of entities.

The functionalities of SHINE make such search services
more desirable. Take literature search service as an example:

e The returned heterogeneous entities provide informa-
tive context for users to understand the results. For
example, a SHINE-query “data mining” with the type
of word will return the relevant authors such as “Jiawei
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Figure 1: Example of Heterogeneous Interrelated
Entities. Each edge denotes a single interaction rela-
tionship, which corresponds to a co-occurrence ma-
trix.

Han” (http://www-sal.cs.uiuc.edu/"hanj), confer-
ences like “KDD” (http://www.acm.org/sigs/sigkdd),
words like “pattern” and “association”, etc. A novice
who is interested in “data mining” can not only find
relevant papers, but also active researchers/professors,
prestigious international conferences, and semantically
related keywords. All these contextual information is
very useful to help the user be familiar with “data
mining” field.

e The query capabilities of SHINE can facilitate users to
specify the desired information along multiple dimen-
sions. Given a SHINE-query, SHINE will return rele-
vant entities in different types. If a user is interested in
a returned entity and wants to know more details, she
can input this entity or its combination with others as
a new SHINE-query to get refined results. For exam-
ple, a user may first submit a SHINE-query with the
type of word. After reading the returned results, she
may submit her second query with the type of author.
This provides more flexibility for users’ information
exploration.

e In contrast to the traditional search which only con-
siders a single interaction relationship, SHINE can uti-
lize all these complementary interaction relationships
to help retrieve semantically related entities more re-
liably. For example, two queries in Figure 1 can be
similar not only because they contain similar words,
but also because they refer to similar Web pages or
are issued by similar users.

However, the task of SHINE is challenging in the follow-
ing aspects. (1) Different from traditional search problems
which only deal with a single type of entities, the goal of
SHINE is to search heterogeneous entities which are of mul-
tiple types. It is not clear how to relate the same query to
different types of entities. (2) There exist hidden semantics
underneath all interactions among heterogeneous entities.
Identifying the latent salient concepts is important to find
semantically related entities. (3) In real applications, the
entity number may be huge. As more and more entities
emerge (e.g., entities in search log), the number of entities
may increase dramatically. Thus the scalability becomes a
big issue and an efficient solution to SHINE is more desir-
able.

To the best of our knowledge, this problem has not been
well studied in previous literature. In this paper, we first
formally define the SHINE problem and then we propose a
unified framework to address it. Two approaches are dis-
cussed within this framework: Multiple-type Latent Seman-
tic Analysis (M-LSA) [23] and Extended Vector Space Model

(E-VSM). The first approach M-LSA is a generalization of
traditional Latent Semantic Analysis (LSA) [12]. Its advan-
tages include: (1) It can represent all heterogeneous objects
in a unified space. (2) It conducts latent semantic analysis
and identifies latent salient concepts underneath all hetero-
geneous interaction relationships. The drawback of M-LSA
is its inefficiency. Motivated by the unified representation
of M-LSA, the second approach E-VSM is proposed as a
very efficient solution to SHINE. E-VSM is an extension of
the traditional Vector Space Model (VSM) and is shown
to be linearly scalable in off-line indexing and sublinear in
on-line searching. With the unified representation of hetero-
geneous objects in E-VSM, important information retrieval
techniques, ranking and feedback, can be incorporated natu-
rally. As shown in [3], the essence of spectral methods is to
conduct “document expansion”. Feedback in our model is
to conduct “query expansion”, which could achieve similar
effects as document expansion. Thus combining feedback
with E-VSM can help find semantically related objects.

To test the effectiveness of our proposed methods, we con-
duct experiments on 3 data sets including a literature data
set, a search engine log data set, and a recommendation data
set. The experiments show that our SHINE formulation is
very flexible and effective for different types of tasks.

The rest of this paper is organized as follows. We review
the related work in Section 2. Section 3 is to formally define
SHINE problem and we describe our unified framework in
Section 4. Our system is described in Section 5. We adapt
this system into 3 different tasks and conduct experiments
in Section 6. Finally, we conclude this paper and discuss
future work in Section 7.

2. RELATED WORK

Heterogeneous interrelated entities have attracted lots of
attentions recently. For example, several recent work studies
the effectiveness of clustering different types of objects by
utilizing the interaction information [25, 22, 16, 4]. They
find that the clustering results can be improved compared
with the results when they only consider a single type of
interaction relationship. Other work such as SimRank [14]
measures the similarity between different objects by utilizing
the interactions among heterogeneous objects. [23] proposes
to conduct latent semantic analysis on these heterogeneous
interrelated objects, which is a generalization of the work
[11]. In this paper, we utilize the heterogeneous relationships
among different types of entities to improve users’ search
experiences.

PageRank [6, 18] and HITS [15] are the two earliest link
analysis algorithms. They only consider a single type of rela-
tionship (i.e., hyper-links) among homogeneous Web pages.
Recent work such as [26, 17, 1] extends PageRank or HITS
to consider the interactions among heterogeneous entities.
All these algorithms focus on improving the estimation of
entities’ static ranking, which is query independent. In con-
trast, we are studying how to extend query capabilities and
search result richness by utilizing the relationships among
heterogeneous entities.

Instead of solely returning Web pages, several recent work
proposes to answer search queries by a certain type of en-
tities in a finer granularity [8, 9, 10]. For example, in [8],
“object finder” queries are defined to find the top K ob-
jects that match a given set of keywords. Their algorithm
first retrieves relevant documents and then relevant objects



are ranked according to their relationship with the returned
documents. “Expert search” track was initiated by TREC
conference' recently and its task is to retrieve experts given
a topic description. Our work is more general since all these
work only considers retrieving a specific type of objects and
the query can only be a set of keywords.

SHINE is also related to several commercial systems such
as Google Scholar? and Citeseer®, when we apply our tech-
nologies to the literature domain. A recent feature of Google
Scholar is that it also provides an author list besides re-
trieved papers given a query. This is a similar feature to
SHINE in which authors are used to answer an input query.
However, there is no public research about how they rank
the authors. Furthermore, we are studying a more general
problem which can also return other objects (e.g., confer-
ences) and can be applied to data sets in other domains
(e.g., search engine logs).

3. THE SHINE PROBLEM

In this section, we formally define our research problem:
Search Heterogeneous INterrelated Entities (SHINE). We
first describe and model the data formally. Then we define
the SHINE problem.

3.1 Heterogeneous Interrelated Entities

Suppose we have N types of objects {X1, Xa, ..., X~} and
each pair of them could have an interaction relationship.
We model the objects and their interactions using a graph
as defined in the following:

DEFINITION 1 (MULTIPLE-TYPE GRAPH). A multiple-
type graph G(V, E) consists of N vertices with the i-th vertez
corresponding to the i-th type of entities X;. If two types of
entities X; and X; have an interaction relationship, there is
one edge e;; € E connecting the i-th and j-th vertices.

For example, in Figure 1, the corresponding graph G con-
tains 4 types of objects: users, queries, Web pages, and
words. We have 5 interaction relations in G and each of
them is denoted by an edge in Figure 1. In general, all the
interaction relationships can be represented as co-occurrence
matrices with each entry measuring the correlation strength
between two corresponding entities. For example, in infor-
mation retrieval using the “bag-of-words” method, the in-
teraction between words and documents is represented by a
co-occurrence matrix with each entry measuring the word
importance in the corresponding document [2]. In this way,
each edge e;; in a multiple-type graph corresponds to a
|Xi| x |X;| matrix M;;. In Figure 1, the 5 co-occurrence
relationships correspond to 5 matrices and an example is
also included in Figure 1. For a particular application, dif-
ferent matrices may have different importance and we can
associate a weight «a;; with edge e;; to reflect its relative
importance.

The multiple-type graph encodes the semantics of all the
interactions among heterogeneous entities. Semantically re-
lated objects may directly co-occur with each other or may
co-occur via other types of objects. Take the literature
search as an example, two researchers may be related be-
cause they have co-authored papers. They can also be im-
plicitly related because their papers are published in related
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conferences or their papers are on the same topics. Our
task of SHINE is to exploit these interactions on a multiple-
type graph to answer a query by semantically related data
objects.

3.2 SHINE Formulation

On a multiple-type graph, the task of SHINE is to retrieve
all types of relevant objects given a query. In this section,
we give the definition of a SHINE-query and the expected
results in SHINE framework.

DEFINITION 2 (SHINE-QUERY). A query Q in SHINE
framework is an object of any type or a list of objects of
multiple types. In general, @ := [t; : ID;]i=1..x, where k is
the number of objects in query Q and [t; : I1D;] means the
type of the i-th object in @ is t; and its identifier is 1D;.

For example, in literature search task, the query @ :=
[author : Jiawei Han;word : mining] is a combination of
two objects. The first object is an author and its identifier
is Jiawei Han and the second is a word and its identifier
is mining. Just as the “bag-of-words” method used in ad-
hoc information retrieval, we can treat a SHINE-query ) as
“bag-of-objects”.

DEFINITION 3 (SHINE RESULTS). Given a SHINE-query
Q and a multiple-type graph G, the SHINE search results are
several lists of relevant objects. All the objects in a list are
of the same type and ranked by its relevance with respect to
the query Q.

Table 1 presents a mock up result example of the given
query @ := [author : Jiawei Han;word : mining] in the
literature search task. Here we have 4 types of objects thus
we have 4 lists. Each list is ranked according to the relevance
of the objects with respect to the query ). For example, the
first conference is “KDD” and the first keyword is “pattern”,
which are the most relevant conference and the most relevant
keyword to the query @ respectively.

| papers | authors | conferences | keywords |
pl Philip_Yu KDD pattern
SIGMOD | association

p2 Xifeng_Yan

Table 1: An example of the SHINE search results in
the literature search application.

As we can see, the advantages of SHINE include: (1)
SHINE provides more flexibility for users to specify the
desired information by SHINE-queries which are not re-
stricted to several keywords. We can add any type of ob-
jects as components into SHINE-queries. For example, if
a user only wants to know the “mining” papers published
by “Jiawei Han”, she can compose a query Q := [author :
Jiawei Han;word : mining]. (2) SHINE returns differ-
ent types of entities which enrich the information of the
search results and provide useful context for users to di-
gest the information. This can also help to answer interest-
ing questions such as: “Who are the active researchers in
SIGIR conference?” “What keywords can be used to an-
notate a researcher or a conference such as CIKM?” (3)
SHINE search results also facilitate users’ information ex-
ploration. For example, a user may refine her query from



Q := [author : Jiawei Han;word : mining] to Q := [word :
mining; conference : KDD] if she wants to know more
along the conference dimension.

In the experiment part, we will build SHINE search ser-
vices on a literature data set and a commercial search engine
log data set. We will show that more interesting questions
or information needs can be satisfied by our SHINE func-
tionalities.

4. OUR SOLUTION TO SHINE

In this section, we propose a unified framework for search-
ing heterogeneous objects. Within this framework, all het-
erogeneous objects are represented in a unified vector space.
Thus the relevance between any two objects (even in differ-
ent types) can be measured in this space and the ranking
and feedback techniques used in the traditional information
retrieval can be incorporated in our framework naturally.

4.1 Object Representations

We first describe two approaches to represent heteroge-

neous objects by utilizing the interactions among them: Multi-

type Latent Semantic Analysis (M-LSA) based method and
Extended Vector Space Model (E-VSM) based method.

4.1.1 M-LSA based Method

In our previous work [23], M-LSA is proposed to conduct
latent semantic analysis using interactions among hetero-
geneous objects. Given a multiple-type graph G, M-LSA
is used to identify the most important concepts contained
in the co-occurrence data. As a result, all heterogeneous
objects are mapped into a low-dimensional semantic space.
The importance of concepts are identified by the Mutual
Reinforcement Principle (MRP):

On a multiple-type graph G with a number of
vertices and pairwise co-occurrence relationships,
important objects of a type co-occur with impor-
tant objects of other types.

Formally, assume we have N types of objects on graph G:
{X1,X2,..., Xn}. For any two types of objects: X; and Xj,
we have the co-occurrence matrix M;; (M;; = 0 if the edge
e;; is absent on G). Let us associate an importance value
with each object. For the i-th type of objects in X;, we
have one weight vector w; to denote their importance. The
mutual reinforcement principle can be expressed as:

wi = Y i Myw, 1)
VjijAi
where a;; reflects the relative importance of matrix Mj;.
Taking a unified view of the latent concepts, we use w =

[w17...7wN]T as the concatenated importance vector and
define

0 o12Mi2 oinMin
alezl 0 CYZNM2N
R= . . . . (2
an1My1 an2Mpy2 - 0

as the unified co-occurrence matrix. We can rewrite Equa-
tion (1) in a matrix format:

w=R -w (3)

It is easy to know that w will converge to the eigenvector of
the co-occurrence matrix R.

In M-LSA, each w is regarded as a latent concept under-
neath all the co-occurrence relations. Each entry in w cor-
responds to an object and its value can be regarded as the
association weight between the object and this latent con-
cept. Similarly, the first k eigenvectors of R represent the
top k most important concepts, which span a k-dimensional
semantic space to represent all the objects. Specifically, let

A12> A2 > > g

be the top k eigenvalues of R and the corresponding vectors
are

Ci1,C2,...,Ck.

A\ gives precisely the salience of the corresponding concept
vector ¢; (1 < I < k). Therefore, the i-th object can be
represented by

[A1c1i, A2€2i, vy AkChi)

where ¢;; is the i-th entry in ¢; (i.e., the association weight
between the i-th object and the I-th concept). All the ob-
jects can be represented in a matrix:

[M e, A2,y Ak - ci]

with each row representing an object in the k-dimensional
space.

M-LSA based method has the advantage of utilizing all
the co-occurrence relations to capture the latent semantics
on a multiple-type graph. Unfortunately, its computational
cost is expensive because it involves solving an eigenvector
problem of a matrix with dimension equal to the total num-
ber of objects. This makes it difficult to apply M-LSA to
large scale data sets.

4.1.2 Extended Vector Space Model

Motivated by the unified representation of M-LSA, we
propose an efficient method: Extended Vector Space Model
(E-VSM). E-VSM is closely related to M-LSA in that it rep-
resents all heterogeneous objects in a unified space.

E-VSM is an extension of traditional vector space model.
In traditional vector space model, given a term by document
co-occurrence matrix A = [as;], each document is repre-
sented in a word space, which corresponds to a column vec-
tor in A, and each word is represented in a document space,
which corresponds with a row vector in A. To seek a uni-
fied space to represent both documents and words, we “con-
catenate” the two spaces spanned by words and documents
and represent each object (document or word) by a unified
longer vector. By filling zeroes in the missing dimensions of

0 A
AT 0
this type of representations do not help since a word and
a document have no overlapped dimensions with nonzero
values, and thus their similarity score is still zero in this
space. Clearly, we can replace the two 0 matrices by the co-
occurrence information among documents and among words
respectively. In the worst case where this co-occurrence in-
formation is not available, we can still assume that an object
co-occurs with itself by default, and thus replace 0 matrices
by the identity matrix I. We get:

v=| 4o 7] (@

each object, we get a unified matrix . However,



Each row in the upper part is a document representation
vector and each row in the lower part is a word representa-
tion vector.

On a multiple-type graph, each type of objects co-occur
with other types of objects. Similar to the document and
word representations, an object can be represented by sev-
eral vectors. Each vector corresponds to a type of objects
which co-occur with the considered object. Formally, given
a multiple-type graph G with N vertices, the i-th type of ob-
jects can be represented by the j-th type of objects via the
co-occurrence matrix M;;. By concatenating all the matrix
together, we can represent each object by a unified longer
vector. We again can assume that each object co-occurs
with itself by default. Then we obtain a new matrix U:

I M2 --- Min
Moy 1 <o+ Moan
U= . . . (5)
Myx1 My2 - 1

In the unified matrix U, each object corresponds to a row
vector. All the objects are represented in a unified space
spanned by all the objects on the multiple-type graph G.
Similar to M-LSA, we can associate an importance value «;;
with each matrix M;; and thus transform U to a weighted
matrix

I a12Mia a1y Min
a21M21 I OCQNM2N
U= : : . . (6)
aniMn1  an2Mn2 -+ I

E-VSM is closely related to M-LSA. In fact, the following
Theorem 1 describes their relation.

THEOREM 1. Matriz U in Equation (6) and matriz R in
Equation (2) have the same eigenvectors.

PRrROOF. It is easy to show that U = I 4+ R. Suppose c; is
an eigenvector of R with eigenvalue \;, we have R-c;, = \;-c;.
Thus U -¢; =¢; + R-¢; = (1 + A;) - ¢;. This shows that ¢;
is an eigenvector of U with eigenvalue 1 4+ A;. Similarly, it
can be shown that eigenvectors of U are also eigenvectors of

R. O

Both M-LSA and E-VSM represent all the objects in a
unified space. From Theorem 1, we know that M-LSA is
the representation of E-VSM in a latent semantic space, and
thus a potentially better representation. There are several
advantages in a unified space: (1) Since all the objects are
represented in the same space, we can calculate the simi-
larity between heterogeneous objects. (2) This representa-
tion considers multiple and complementary information on
G and thus can measure the similarity between objects more
accurately. (3) This can facilitate to incorporate the useful
techniques such as ranking and feedback used in the tradi-
tional information retrieval into SHINE and we will discuss
this in the next section.

4.2 Ranking and Feedback

One of the most important techniques in information re-
trieval is ranking [21]. Given a text-query consists of sev-
eral words, documents are ranked according to the similar-
ity scores between the documents and the query. We define
the similarity measure for the unified representations in this

section. Later we will show that the traditional VSM is a
special case in our definition.

Since each object is represented in a unified space, a straight-
forward way to define the similarity is the inner product or
cosine score of two vectors. In the following, we will only
use inner product as the similarity measure since cosine sim-
ilarity can be defined similarly. Specifically, the similarity
between two object vectors 01 and o2 is:

S(o1,02) = 201,1 s 02 (7)
1

where 01, (02,1) is the [-th value in 01 (02).

Given a query @ := [t; : ID,]j=1.x in SHINE framework
and let o; be the object vector corresponding to the j-th
object in @, the similarity between ) and an object vector
o is calculated as:

Sim(Q,0) = ZS(0j7O) (8)

It is easy to show that Sim(Q,0) = S(q,0) where

q:ZOj- (9)

Thus we can regard q as the vector representation of @) in
the unified space.

All the objects can then be ranked according to their sim-
ilarity defined in Equation (8). Since each object bears a
type, we can separate the ranked list according to their types
and thus obtain the SHINE results as defined in Definition 3.

An important and effective technique to improving the re-
trieval performance is feedback. We show that our object
representation can incorporate feedback to conduct query
expansion naturally. As discussed in [3], the essence of
spectral methods like LSA is to conduct “document expan-
sion” implicitly. In our E-VSM, feedback is used to conduct
“query expansion” and thus could achieve similar effects as
document expansion. Therefore, combining feedback with
E-VSM can help find semantically related objects. Specif-
ically, suppose that we have a set of relevant objects, C,
which are either judged by users or the top retrieved results
as in pseudo feedback [7], the expanded query vector q of q
is calculated similarly to the Rocchio method [19]:

o 1
q—ﬁ~q+v-mzo (10)

ocC

where 8 and vy are the weighting factors. By considering
the different types of objects in C, the expansion can be
improved as:

N
d=ﬁ~q+v~2%20 (11)
i=1 "

ocC;

where C; is the i-th type of feedback objects and «; is its
feedback weight. We add a constraint Zf\r:l a; = 1. Since q
is still in the unified space, we can use the expanded query to
retrieve and rank all the objects again to get refined results.

‘We have incorporated the ranking and feedback techniques
into our proposed method. Both are extended from the tra-
ditional information retrieval techniques naturally since we
represent all types of objects in a unified space.



4.3 Relation with Vector Space Model

In the traditional VSM, there are two types of objects
involved: words and documents. In E-VSM, the unified ma-
trix is the same as the matrix U in Equation (4). Therefore,
the ¢-th word has a vector w; and the j-th document has a
vector d; in the unified space. Suppose we have m words
and n documents, then

0 1<i<n,l#j
djl = .

1 I=y (12)
S 0 n+1<I<n+ml#n+i
Wil = V1 l=n+i

Given a query @ which have k words, let w;.) be the
vector corresponding to the r-th word in the query. Then,
according to Equation (8), we have

Sim(Q7dj) = Zf:l S(Wi(r')7dj)
= X X wigr - di
= Ele(ZL Wiy, - djit
Z?innll Wi(ry, - dj1)
= i Wi, + diitr)+n

The last step is based on Equation (12). Since U is symmet-
ric in Equation (4), we have d; ;()4+n = Wj(r),;, Which is the
co-occurrence frequency of i(r)-th word in j-th document.
We have

Sim(Q,d;) o< Y7 i
= EteQ C(ta Q) cat,j

Thus it is the dot product between the query vector and doc-
ument vector in a space spanned by words, which is the tra-
ditional similarity score used in vector space model. There-
fore, the traditional vector space model is a special case of
E-VSM. If we have co-occurrence information within doc-
uments or co-occurrence information within words, we can
incorporate this information into our framework straightfor-
wardly. For example, the hyperlinks between Web pages can
be regarded as co-occurrence information among Web pages
and can be incorporated into our method easily.

S. SYSTEM OVERVIEW

We develop a general architecture for SHINE. Different
applications can be adapted with little modification. Fig-
ure 2 gives the sketch of our system. It basically involves
two parts: offline indexing and online searching. In the of-
fline indexing part, the first step is to extract different co-
occurrence relationships from the raw sources such as search
engine logs. After we get each co-occurrence data, the next
step is to build the unified indexing and push the the data to
a repository. This step is the key step for the offline indexing
part. We first build a unified dictionary to map each object
string to a unique identifier. Then we go over this dictionary
and build the representation of each object by iterating over
all its co-occurred objects. We keep the type identity by
assigning each object a type indicator. After this, we index
all the objects and store the index into the repository. For
the online searching part, the search interface accepts users’
input, composes the input as a bag of objects, and sends it
to the retrieval and ranking component. The retrieval com-
ponent ranks all the objects according to their similarities
to the SHINE-query. Since each object has a type indicator,
the ranking component then separates the returned objects
into different ranking lists and returns them to end users.

An snapshot of our system interface on literature data
is given in Figure 3. In this figure, we have several input
boxes where users can input objects of different types as
queries. For example, the users can input a keyword, a
conference, or an author, as a SHINE-query. The returned
results include papers, authors, conferences, and keywords.
Each type of returned objects are ordered by their relevance
to the SHINE-query. To facilitate users’ information explo-
ration, we embed a hyperlink under each object descriptor.
If a user clicks on a hyperlink, the system will automatically
take the corresponding object as a new SHINE-query and
return its corresponding results.

6. EXPERIMENTS

In this section, we conduct experiments to show the flex-
ibility and effectiveness of our SHINE framework. We use
three different data sets for experiments: a literature data
set, a commercial search engine log data set, and a recom-
mendation data set. We use E-VSM model as our solution
to SHINE since these data sets are large.

6.1 SHINE Search on Literature Data

Organizing and searching literatures motivate the devel-
opment of digital libraries such as ACM and IEEE Digital
Libraries? and search engines such as Citerseer and Google
Scholar®. In literature domain, researchers always want to
find relevant and authoritative publications. In general, sev-
eral different methods are used, including typing some key-
words to a literature search engine, going to a well-known
researcher’s publication page, or going to a conference pro-
gram page, to find relevant publications. Indeed, researchers
implicitly try to find their paper objects using other objects
such as keywords, authors, and conferences, as queries. In
this section, we show that we can integrate all these different
“methods” in our unified SHINE framework.

Papers Authors

Conferences Keywords

Figure 4: The multiple-type graph of literature data

6.1.1 Data Set

The data set we use in this experiment is the DBLP data
set®, which has information of all papers published by ma-
jor computer science conferences. In this data set, each
paper has an entry including its title, authors, published
conference, and published year, etc. We define 4 types
of objects for this data set: papers, authors, conferences,
and keywords. The corresponding multiple-type graph is
shown in Figure 4. In this data set, we have 463,931 pa-
pers, 350,538 authors, 2,957 conferences, 78,349 keywords,
and thus 895,701 objects in total. Based on the multiple-
type graph, we represent each object in a unified space by
E-VSM model using Equation (6). We set all a;;’s to 1 in
this experiment.

“http://www.acm.org, http://www.ieee.org
5http://citesee]r.ist.psu.edu, http://scholar.google.com
Savailable from http://dblp.uni-trier.de/xml
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Figure 3: The interface snapshot of SHINE for literature search.

( Researchers | Conferences | Keywords ||
W. Bruce Croft SIGIR retrieval
James P. Callan TREC information

Chris Buckley CIKM document
Norbert Fuhr ECDL system
James Allan ECIR model
Gerard Salton Hypertext query
Clement T. Yu DEXA text
ChengXiang Zhai VLDB base
Mark Sanderson EDBT search
Wei-Ying Ma WWW trec

Table 2: Results for SHINE-query “Conference:-

SIGIR”
( Researchers | Conferences | Keywords ||
ChengXiang Zhai SIGIR retrieval
David A. Evans TREC model
Xuehua Shen CIKM information
Xiang Tong KDD trec
John D. Lafferty ANLP language
Tao Tao ACL clarit
Natasa Milic-Frayling UAI experiment
Hui Fang ICME text
Bin Tan ‘WebDB feedback
Rong Jin CSB document
Table 3: Results for SHINE-query

ChengXiang Zhai”

“Author:-

6.1.2 Experiment Results

The interface for literature search is shown in Figure 3.
This interface allows users to input SHINE-queries with dif-
ferent types of objects and the system can answer users’
queries with multiple types of objects. These functionali-
ties can satisfy several interesting information needs such
as “What is the most famous researchers in SIGIR confer-
ence?” “What are the representative keywords to describe
a researcher? ” and etc.

We show several representative cases in Table 2 and Ta-
ble 3. Due to the space limit, we did not show the returned
papers in these results. In Table 2, our query is “SIGIR” of
conference type. We can see the first researcher is “Bruce
Croft” and the relevant words include “information”, “re-
trieval”, and “query”. All these words accurately describe
the research focus of “SIGIR” conference. The similar con-
ferences to SIGIR are “TREC”, “CIKM”, and “ECIR”, etc.
All these are very meaningful. In Table 3, we show the
results when the SHINE-query is “ChengXiang Zhai” of au-
thor type. We can see that all the returned words and con-
ferences provide useful information to know the research in-
terests of this researcher. This confirms the effectiveness of
our solution to SHINE. Furthermore, SHINE can also fa-
cilitate users’ information exploration. For example, a user
may first issue “SIGIR” as a query along the conference di-
mension. After reading the results, she may want to know



( Text-queries | Web pages | Keywords || Text-queries | Web pages | Keywords |
xbox 360 www.microsoft.com/xbox xbox map quest www.mapquest.com map
xbox xbox360.teamxbox.com 360 mapqust findme.mapquest.com mapquest
xbox.com www.teamxbox.com game wwwmapquest.com maps.yahoo.com direct
www.xbox.com www.xbox.com/en-us xbox360 www.mapqwest.com | www.mapquest.ca/directions quest
microsoft xbox 360 www.xbox.com microsoft map quest.com yp.mapquest.com ca
xbox 360 news xbox360.ign.com box www.mapquest.com/ www.mapquest.com/maps mapqest
xbox 360 locator www.xbox.com/live cheat mapgqest maps.google.com online
buy xbox 360 www.xbox.com/en-us/games link mapquest.com www.mapquest.ca/maps city
xbox 360 in stock xbox360.1up.com online www.mapquest.com www.randmecnally.com mapqust
xbox 360 in stock now forum.teamxbox.com news mapquest www.multimap.com travel

Table 4: SHINE results for “xbox 360” of text-query
type

more about researcher “ChengXiang Zhai” and issue this as
a SHINE-query with author type. All these can be easily
satisfied by SHINE and the results will change from Table 2
to Table 3.

6.2 SHINE Search on Click-Through Logs

Search engine logs contain useful information about the
interactions between Web users and search engines, and have
been studied intensively for various applications. For exam-
ple, search engine companies want to provide better services
for advertisers in order to help them bid high quality adver-
tising keywords; Web masters hope to provide personalized
contents to their users; and general users want to get assis-
tance to formulate better queries. In this section, we apply
SHINE to click-through log data to satisfy the above needs.

6.2.1 Data Set

Search engine logs generally have the following informa-
tion: at what time, which user submit what query and visit
what pages [24]. In our experiment, we do not consider the
time information. For privacy concern, we do not include
user information either. Thus we have 3 types of objects in
this experiment: text-queries, Web pages, and words. The
multiple-type graph in this application is a triangle with 3
vertices and 3 edges.

Our click-through log data is a sample from one month’s
log data of a commercial search engine. After preprocess-
ing, we have 1,161,248 text-queries, 2,044,147 pages, and
252,102 words. In Figure 1, their exists a containing re-
lation between pages and words. An intuitive way to build
this relation is to use the contents of pages. In order to avoid
crawling all the Web pages, we build this relation by pooling
all the text-queries which refer to a certain page together as
the pseudo-content of this page. Therefore, the log data is
enough for us to build all the 3 co-occurrence relationships
in this application. We again set all a;;’s to 1.

6.2.2 Experiment Results

The interface for this application is similar to the one
shown in Figure 3. Users can also exploit this search en-
gine to answer various interesting questions. As illustrated
in Table 4 and Table 5, given the input “xbox 360” of text-
query type, the top returned text-queries include “xbox”,
“microsoft xbox 3607, “xbox.com”, and etc; the top re-
turned Web pages include “www.microsoft.com/xbox” and
“www.xbox.com”, etc. Given the input “www.mapquest.-
com” of Web page type, the related text-queries, Web pages,
and keywords are shown in Table 5. All these show the effec-
tiveness of SHINE and can indeed facilitate the information

Table 5: SHINE results for “www.mapquest.com”
of Web page type

[ Text-query type | Web page type | Word type ||
xbox 360 www.microsoft.com hotel
ibm www.ibm.com toyota
digital camera www.dell.com weather
hotel www.yellowpages.com perl
free samples www.yahoo.com java
harry potter www.xbox.com depression
pizza hut www.google.com harry potter
depression WWW.Mmsn.com music
free music www.uiuc.edu yellow page
toyota www.mapquest.com pizz hut

Table 6: 30 SHINE-queries composed from search
logs: 10 with text-query type, 10 with Web page
type, and 10 with word type.

needs of general users, Web masters, and advertisers as we
discussed above.

In order to evaluate SHINE’s search accuracy, we select
30 SHINE-queries from our log data: 10 of text-query type,
10 of Web page type, and 10 of keyword type. All these
SHINE-queries are listed in Table 6. For each SHINE-query,
we have 3 lists of objects in SHINE search results (e.g., Ta-
ble 5). To evaluate these results, human subjects are asked
to judge each returned object given a SHINE-query. We use
precision at N documents (P@N) and let N range from 1 to
10 for evaluation. The results are shown in Figure 5. In this
figure, the “Average” line corresponds to the evaluation on
all the 90 groups of search results. “Text-query type input”,
“Web page type input”, and “Word type input” correspond
to the evaluation result when text-queries, Web pages, and
words are used as input type respectively. From Figure 5,
we can see that our solution to SHINE is quite promising:
The average PQ1 is 93.1% and P@10 is 75.8%. For SHINE-
queries with different types, most of PQN’s are larger than
70.0% and this shows that E-VSM is an effective model to
handle different SHINE-queries.

6.3 SHINE Search on Recommendation Data

In this section, we show that traditional Collaborative Fil-
tering (CF) can also be modeled in our SHINE framework.
In CF, there are two types of objects: n users and m items.
The task of CF is to recommend items to an active user
based on a historical user by item rating matrix R = [r;;]
with r;; being the rating value of user ¢ to item j. In the
SHINE framework, we regard CF as to retrieve (recommend)
items given a user as SHINE-query. We will show that our
SHINE framework can model user-based CF [13], item-based
CF [20], and also their combination. In this paper, we use
SHINE-CF to denote CF in our SHINE framework.
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Figure 5: P@QN of SHINE results on click-through
logs with 30 SHINE-queries.

6.3.1 Traditional CF

Given an active user, user-based CF first finds its simi-
lar users and then recommends items based on these similar
users [13]. The most popular method to calculate the simi-
larity between two users v and w is Pearson correlation:

Yoy (o = 7o) (rui — Tu)
\/221(7'%1' —7y)%- 2?;1(7'%1' - Tu)?

where m is the number of items, 7,; (ru,) is the rating
of user v (u) for item ¢, and 7, (7.) is the average rating of
user v (u). Wy, is the similarity score between the two users.
We use N, to denote the set of selected nearest neighbors
for v, then the prediction of v’s rating for an unseen item ¢
is calculated as

(13)

Wy,u =

EuENW (ru,i - 77’:1) * Wy,
EuENv w'u,u

and the items with the largest prediction values are recom-
mended to user v.

Item-based CF [20] is to first find similar items for each of
the items that the active user rated. Then the recommen-
dation score of a given item ¢ is computed as

Poi = Ty + (14)

~ Zz: similar to 7 A v rated x Wz,i* Tv,x

To,i =

(15)

Ez: similar to i A v rated x We,i

6.3.2 SHINE-CF

The Pearson correlation is indeed the cosine score between
two vectors if we tra~nsform Tv,; of R by ry,; — 7y, and thus
obtain the matrix R. We compose the unified matrix in

SHINE as
I R

o=| 4 7] (16)
Given a user as a SHINE-query, SHINE-CF is to retrieve
both similar users and similar items with cosine similarity.
It is easy to verify that in the unified space defined in Equa-
tion (16), the similarity between two users v and u is the
same as Wy, in Equation (13). The retrieved items are
those which have been rated by the current user. In the sec-
ond step, we do the feedback to modify the SHINE-query
using Equation (11) and then only retrieve items. If we
only use retrieved users in feedback (denoted as user-based
method in the following), SHINE-CF will be the same as
user-based CF. If we only use retrieved items in feedback
(denoted as item-based method in the following), SHINE-
CF will be similar to item-based CF. Apparently if we use
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Figure 6: The impact of number of feedback objects
in SHINE-CF
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Figure 7: The impact of combination parameter «
in SHINE-CF

both users and items in feedback, we can combine these two
methods together. In the following experiment, we will show
that the combination can help improve the recommendation
accuracy.

We use half-time utility metric to evaluate the recommen-
dation accuracy [5]. For a user v, the expected utility of a
ranked list of items is:

_ max(ry,; — 7v,0)
Ry = Z 2(i—1)/(r—1)
j
where 7 is the half-time parameter (7 = 5 in our experi-
ments) and r, ; is v's rating for the item which is at the
j-th position in the current rank list. The final score over
all users in the test set is:

. R
>, R

where Ry is the maximum possible utility obtained when
all test items are ranked at top according to user v’s rating.

We use the benchmark MovieLens’ data set to compare
different methods. Figure 6 shows the impact of number of
objects used in feedback on both item-based method and
user-based method in SHINE-CF. The best result of user-
based method is achieved when the number of feedback
objects is 60 and the best result of item-based method is
achieved when the number is 40.

In Figure 7, we combine both item-based and user-based
method by a parameter a and we vary o« from 0.0 to 1.0
with step 0.1. When a = 0, it is the item-based method
and when o = 1, it is the user-based method. Clearly, the

R =100

"http://www.grouplens.org/



400 — T 800
Offline ——
350 Onling -
300 4 600
250
200
150
100

50

1 400

time (s)
time (ms)

4 200

percentage
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time with respect to the data size

combination can improve the recommendation utility. We
get the best result when a = 0.6. The combination method
achieves relative improvement 7.2% over item-based method
and 3.5% over user-based method.

6.4 Efficiency Evaluation

In this section, we study the efficiency of our SHINE so-
lution. In particular, we study the average offline indexing
and online searching time in our E-VSM model.

In this paper, we study the scalability of SHINE and re-
port the experiment results on the search engine logs. We
preprocess a large scale data set which contains 2,643,752
queries, 4,275,622 Web pages, and 6,888,081 words. In or-
der to investigate the scalability of our method, we randomly
select a certain percentage of the objects (from 20% to 100%
with step=20%) from the whole data set to measure the av-
erage offline indexing and online searching time. The results
are shown in Figure 8. We measure the offline indexing time
by second and the online searching time by millisecond. The
online time is the average time of 500 SHINE-queries ran-
domly selected from our search logs. From Figure 8, we can
see that the offline indexing time is linearly increasing with
the data size. The online time is approximately sublinear.
For example, when we increase the data size from 80% to
100% (25% relative larger), the average time increases from
357 to 373 ms (5% relative slower). These confirm that E-
VSM is an efficient solution to the SHINE problem.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we define and study a novel search problem:
search heterogeneous interrelated entities (SHINE). Com-
pared with traditional search services, both the query ca-
pability and the search result richness are extended in our
SHINE framework. We discuss and compare two methods,
M-LSA and E-VSM, in this paper. Experiments with E-
VSM on three data sets (a literature data set, a search en-
gine log data set, and a recommendation data set) show the
effectiveness and flexibility of our SHINE framework.

SHINE is a promising framework and there are several
natural future work. First, we only focus on the query de-
pendent relevance based ranking in this paper. In the future,
we will study how to better combine it with link-based static
ranking to further improve the search results. Second, we
set matrix weights «;;’s to 1 in our experiments. It would
be interesting to study how to set o;;’s automatically and
a compelling method that we will study is to use machine
learning techniques to learn these weight parameters.
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