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ABSTRACT
Effective organization of search results is critical for improv-
ing the utility of any search engine. Clustering search results
is an effective way to organize search results, which allows
a user to navigate into relevant documents quickly. How-
ever, two deficiencies of this approach make it not always
work well: (1) the clusters discovered do not necessarily
correspond to the interesting aspects of a topic from the
user’s perspective; and (2) the cluster labels generated are
not informative enough to allow a user to identify the right
cluster. In this paper, we propose to address these two defi-
ciencies by (1) learning “interesting aspects” of a topic from
Web search logs and organizing search results accordingly;
and (2) generating more meaningful cluster labels using past
query words entered by users. We evaluate our proposed
method on a commercial search engine log data. Compared
with the traditional methods of clustering search results, our
method can give better result organization and more mean-
ingful labels.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]: Clustering, Search process

General Terms: Algorithm, Experimentation

Keywords: Search result organization, search engine logs,
interesting aspects

1. INTRODUCTION
The utility of a search engine is affected by multiple fac-

tors. While the primary factor is the soundness of the under-
lying retrieval model and ranking function, how to organize
and present search results is also a very important factor
that can affect the utility of a search engine significantly.
Compared with the vast amount of literature on retrieval
models, however, there is relatively little research on how to
improve the effectiveness of search result organization.

The most common strategy of presenting search results is
a simple ranked list. Intuitively, such a presentation strat-
egy is reasonable for non-ambiguous, homogeneous search
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results; in general, it would work well when the search re-
sults are good and a user can easily find many relevant doc-
uments in the top ranked results.

However, when the search results are diverse (e.g., due
to ambiguity or multiple aspects of a topic) as is often the
case in Web search, the ranked list presentation would not
be effective; in such a case, it would be better to group the
search results into clusters so that a user can easily navigate
into a particular interesting group. For example, the results
in the first page returned from Google for the ambiguous
query “jaguar” (as of Dec. 2nd, 2006) contain at least four
different senses of “jaguar” (i.e., car, animal, software, and a
sports team); even for a more refined query such as “jaguar
team picture”, the results are still quite ambiguous, includ-
ing at least four different jaguar teams – a wrestling team, a
jaguar car team, Southwestern College Jaguar softball team,
and Jacksonville Jaguar football team. Moreover, if a user
wants to find a place to download a jaguar software, a query
such as “download jaguar” is also not very effective as the
dominating results are about downloading jaguar brochure,
jaguar wallpaper, and jaguar DVD. In these examples, a
clustering view of the search results would be much more
useful to a user than a simple ranked list. Clustering is also
useful when the search results are poor, in which case, a user
would otherwise have to go through a long list sequentially
to reach the very first relevant document.

As a primary alternative strategy for presenting search
results, clustering search results has been studied relatively
extensively [9, 15, 26, 27, 28]. The general idea in virtually
all the existing work is to perform clustering on a set of top-
ranked search results to partition the results into natural

clusters, which often correspond to different subtopics of the
general query topic. A label will be generated to indicate
what each cluster is about. A user can then view the labels
to decide which cluster to look into. Such a strategy has
been shown to be more useful than the simple ranked list
presentation in several studies [8, 9, 26].

However, this clustering strategy has two deficiencies which
make it not always work well:

First, the clusters discovered in this way do not necessarily
correspond to the interesting aspects of a topic from the
user’s perspective. For example, users are often interested
in finding either “phone codes” or “zip codes” when entering
the query “area codes.” But the clusters discovered by the
current methods may partition the results into “local codes”
and “international codes.” Such clusters would not be very
useful for users; even the best cluster would still have a low
precision.



Second, the cluster labels generated are not informative
enough to allow a user to identify the right cluster. There
are two reasons for this problem: (1) The clusters are not
corresponding to a user’s interests, so their labels would not
be very meaningful or useful. (2) Even if a cluster really
corresponds to an interesting aspect of the topic, the label
may not be informative because it is usually generated based
on the contents in a cluster, and it is possible that the user is
not very familiar with some of the terms. For example, the
ambiguous query “jaguar” may mean an animal or a car. A
cluster may be labeled as “panthera onca.” Although this
is an accurate label for a cluster with the “animal” sense of
“jaguar”, if a user is not familiar with the phrase, the label
would not be helpful.

In this paper, we propose a different strategy for parti-
tioning search results, which addresses these two deficiencies
through imposing a user-oriented partitioning of the search
results. That is, we try to figure out what aspects of a search
topic are likely interesting to a user and organize the results
accordingly. Specifically, we propose to do the following:

First, we will learn “interesting aspects” of similar topics
from search logs and organize search results based on these
“interesting aspects”. For example, if the current query has
occurred many times in the search logs, we can look at what
kinds of pages viewed by the users in the results and what
kind of words are used together with such a query. In case
when the query is ambiguous such as “jaguar” we can expect
to see some clear clusters corresponding different senses of
“jaguar”. More importantly, even if a word is not ambiguous
(e.g., “car”), we may still discover interesting aspects such
as “car rental” and “car pricing” (which happened to be
the two primary aspects discovered in our search log data).
Such aspects can be very useful for organizing future search
results about “car”. Note that in the case of “car”, clus-
ters generated using regular clustering may not necessarily
reflect such interesting aspects about “car” from a user’s
perspective, even though the generated clusters are coher-
ent and meaningful in other ways.

Second, we will generate more meaningful cluster labels
using past query words entered by users. Assuming that the
past search logs can help us learn what specific aspects are
interesting to users given the current query topic, we could
also expect that those query words entered by users in the
past that are associated with the current query can provide
meaningful descriptions of the distinct aspects. Thus they
can be better labels than those extracted from the ordinary
contents of search results.

To implement the ideas presented above, we rely on search
engine logs and build a history collection containing the past
queries and the associated clickthroughs. Given a new query,
we find its related past queries from the history collection
and learn aspects through applying the star clustering al-
gorithm [2] to these past queries and clickthroughs. We
can then organize the search results into these aspects using
categorization techniques and label each aspect by the most
representative past query in the query cluster.

We evaluate our method for result organization using logs
of a commercial search engine. We compare our method
with the default search engine ranking and the traditional
clustering of search results. The results show that our method
is effective for improving search utility and the labels gen-
erated using past query words are more readable than those
generated using traditional clustering approaches.

The rest of the paper is organized as follows. We first
review the related work in Section 2. In Section 3, we de-
scribe search engine log data and our procedure of building
a history collection. In Section 4, we present our approach
in details. We describe the data set in Section 5 and the
experimental results are discussed in Section 6. Finally, we
conclude our paper and discuss future work in Section 7.

2. RELATED WORK
Our work is closely related to the study of clustering

search results. In [9, 15], the authors used Scatter/Gather
algorithm to cluster the top documents returned from a tra-
ditional information retrieval system. Their results validate
the cluster hypothesis [20] that relevant documents tend to
form clusters. The system “Grouper” was described in [26,
27]. In these papers, the authors proposed to cluster the
results of a real search engine based on the snippets or the
contents of returned documents. Several clustering algo-
rithms are compared and the Suffix Tree Clustering algo-
rithm (STC) was shown to be the most effective one. They
also showed that using snippets is as effective as using whole
documents. However, an important challenge of document
clustering is to generate meaningful labels for clusters. To
overcome this difficulty, in [28], supervised learning algo-
rithms were studied to extract meaningful phrases from the
search result snippets and these phrases were then used to
group search results. In [13], the authors proposed to use
a monothetic clustering algorithm, in which a document is
assigned to a cluster based on a single feature, to organize
search results, and the single feature is used to label the
corresponding cluster. Clustering search results has also at-
tracted a lot of attention in industry and commercial Web
services such as Vivisimo [22]. However, in all these works,
the clusters are generated solely based on the search results.
Thus the obtained clusters do not necessarily reflect users’
preferences and the generated labels may not be informative
from a user’s viewpoint.

Methods of organizing search results based on text cate-
gorization are studied in [6, 8]. In this work, a text classi-
fier is trained using a Web directory and search results are
then classified into the predefined categories. The authors
designed and studied different category interfaces and they
found that category interfaces are more effective than list
interfaces. However predefined categories are often too gen-
eral to reflect the finer granularity aspects of a query.

Search logs have been exploited for several different pur-
poses in the past. For example, clustering search queries to
find those Frequent Asked Questions (FAQ) is studied in [24,
4]. Recently, search logs have been used for suggesting query
substitutes [12], personalized search [19], Web site design [3],
Latent Semantic Analysis [23], and learning retrieval rank-
ing functions [16, 10, 1]. In our work, we explore past query
history in order to better organize the search results for fu-
ture queries. We use the star clustering algorithm [2], which
is a graph partition based approach, to learn interesting as-
pects from search logs given a new query. Thus past queries
are clustered in a query specific manner and this is another
difference from previous works such as [24, 4] in which all

queries in logs are clustered in an offline batch manner.

3. SEARCH ENGINE LOGS
Search engine logs record the activities of Web users, which

reflect the actual users’ needs or interests when conducting



ID Query URL Time
1 win zip http://www.winzip.com xxxx
1 win zip http://www.swinzip.com/winzip xxxx
2 time zones http://www.timeanddate.com xxxx
... ... ... ...

Table 1: Sample entries of search engine logs. Dif-

ferent ID’s mean different sessions.

Web search. They generally have the following informa-
tion: text queries that users submitted, the URLs that they
clicked after submitting the queries, and the time when they
clicked. Search engine logs are separated by sessions. A
session includes a single query and all the URLs that a user
clicked after issuing the query [24]. A small sample of search
log data is shown in Table 1.

Our idea of using search engine logs is to treat these logs
as past history, learn users’ interests using this history data
automatically, and represent their interests by representa-
tive queries. For example, in the search logs, a lot of queries
are related to “car” and this reflects that a large number of
users are interested in information about “car.” Different
users are probably interested in different aspects of “car.”
Some are looking for renting a car, thus may submit a query
like “car rental”; some are more interested in buying a used
car, and may submit a query like “used car”; and others may
care more about buying a car accessory, so they may use a
query like “car audio.” By mining all the queries which are
related to the concept of “car”, we can learn the aspects
that are likely interesting from a user’s perspective. As an
example, the following is some aspects about “car” learned
from our search log data (see Section 5).

1. car rental, hertz car rental, enterprise car

rental, ...

2. car pricing, used car, car values, ...

3. car accidents, car crash, car wrecks, ...

4. car audio, car stereo, car speaker, ...

In order to learn aspects from search engine logs, we pre-
process the raw logs to build a history data collection. As
shown above, search engine logs consist of sessions. Each
session contains the information of the text query and the
clicked Web page URLs, together with the time that the
user did the clicks. However, this information is limited
since URLs alone are not informative enough to tell the in-
tended meaning of a submitted query accurately. To gather
rich information, we enrich each URL with additional text
content. Specifically, given the query in a session, we obtain
its top-ranked results using the search engine from which we
obtained our log data, and extract the snippets of the URLs
that are clicked on according to the log information in the
corresponding session. All the titles, snippets, and URLs of
the clicked Web pages of that query are used to represent
the session.

Different sessions may contain the same queries. Thus
the number of sessions could be quite huge and the informa-
tion in the sessions with the same queries could be redun-
dant. In order to improve the scalability and reduce data
sparseness, we aggregate all the sessions which contain ex-
actly the same queries together. That is, for each unique
query, we build a “pseudo-document” which consists of all
the descriptions of its clicks in all the sessions aggregated.
The keywords contained in the queries themselves can be

regarded as brief summaries of the pseudo-documents. All
these pseudo-documents form our history data collection,
which is used to learn interesting aspects in the following
section.

4. OUR APPROACH
Our approach is to organize search results by aspects

learned from search engine logs. Given an input query, the
general procedure of our approach is:

1. Get its related information from search engine logs.
All the information forms a working set.

2. Learn aspects from the information in the working set.
These aspects correspond to users’ interests given the
input query. Each aspect is labeled with a representa-
tive query.

3. Categorize and organize the search results of the input
query according to the aspects learned above.

We now give a detailed presentation of each step.

4.1 Finding Related Past Queries
Given a query q, a search engine will return a ranked list

of Web pages. To know what the users are really interested
in given this query, we first retrieve its past similar queries
in our preprocessed history data collection.

Formally, assume we have N pseudo-documents in our
history data set: H = {Q1, Q2, ..., QN}. Each Qi corre-
sponds to a unique query and is enriched with clickthrough
information as discussed in Section 3. To find q’s related
queries in H, a natural way is to use a text retrieval al-
gorithm. Here we use the OKAPI method [17], one of the
state-of-the-art retrieval methods. Specifically, we use the
following formula to calculate the similarity between query
q and pseudo-document Qi:

�

w∈q � Qi

c(w, q) × IDF (w) ×
(k1 + 1) × c(w, Qi)

k1((1 − b) + b
|Qi|
avdl

) + c(w, Qi)

where k1 and b are OKAPI parameters set empirically, c(w, Qi)
and c(w, q) are the count of word w in Qi and q respectively,
IDF (w) is the inverse document frequency of word w, and
avdl is the average document length in our history collec-
tion.

Based on the similarity scores, we rank all the documents
in H. The top ranked documents provide us a working set to
learn the aspects that users are usually interested in. Each
document in H corresponds to a past query, and thus the
top ranked documents correspond to q’s related past queries.

4.2 Learning Aspects by Clustering
Given a query q, we use Hq = {d1, ..., dn} to represent the

top ranked pseudo-documents from the history collection
H. These pseudo-documents contain the aspects that users
are interested in. In this subsection, we propose to use a
clustering method to discover these aspects.

Any clustering algorithm could be applied here. In this
paper, we use an algorithm based on graph partition: the
star clustering algorithm [2]. A good property of the star
clustering in our setting is that it can suggest a good label
for each cluster naturally. We describe the star clustering
algorithm below.



4.2.1 Star Clustering
Given Hq, star clustering starts with constructing a pair-

wise similarity graph on this collection based on the vector
space model in information retrieval [18]. Then the clusters
are formed by dense subgraphs that are star-shaped. These
clusters form a cover of the similarity graph. Formally, for
each of the n pseudo-documents {d1, ..., dn} in the collection
Hq, we compute a TF-IDF vector. Then, for each pair of
documents di and dj (i 6= j), their similarity is computed
as the cosine score of their corresponding vectors vi and vj ,
that is

sim(di, dj) = cos(vi,vj) =
vi · vj

|vi| · |vj |
.

A similarity graph Gσ can then be constructed as follows
using a similarity threshold parameter σ. Each document
di is a vertex of Gσ. If sim(di, dj) > σ, there would be an
edge connecting the corresponding two vertices. After the
similarity graph Gσ is built, the star clustering algorithm
clusters the documents using a greedy algorithm as follows:

1. Associate every vertex in Gσ with a flag, initialized as
unmarked.

2. From those unmarked vertices, find the one which has
the highest degree and let it be u.

3. Mark the flag of u as center.

4. Form a cluster C containing u and all its neighbors
that are not marked as center. Mark all the selected
neighbors as satellites.

5. Repeat from step 2 until all the vertices in Gσ are
marked.

Each cluster is star-shaped, which consists a single center

and several satellites. There is only one parameter σ in
the star clustering algorithm. A big σ enforces that the
connected documents have high similarities, and thus the
clusters tend to be small. On the other hand, a small σ will
make the clusters big and less coherent. We will study the
impact of this parameter in our experiments.

A good feature of the star clustering algorithm is that it
outputs a center for each cluster. In the past query collec-
tion Hq, each document corresponds to a query. This center

query can be regarded as the most representative one for
the whole cluster, and thus provides a label for the cluster
naturally. All the clusters obtained are related to the input
query q from different perspectives, and they represent the
possible aspects of interests about query q of users.

4.3 Categorizing Search Results
In order to organize the search results according to users’

interests, we use the learned aspects from the related past
queries to categorize the search results. Given the top m

Web pages returned by a search engine for q: {s1, ..., sm},
we group them into different aspects using a categorization
algorithm.

In principle, any categorization algorithm can be used
here. Here we use a simple centroid-based method for cat-
egorization. Naturally, more sophisticated methods such as
SVM [21] may be expected to achieve even better perfor-
mance.

Based on the pseudo-documents in each discovered aspect
Ci, we build a centroid prototype pi by taking the average
of all the vectors of the documents in Ci:

pi =
1

|Ci|

�

l∈Ci

vl.

All these pi’s are used to categorize the search results. Specif-
ically, for any search result sj , we build a TF-IDF vector.
The centroid-based method computes the cosine similarity
between the vector representation of sj and each centroid
prototype pi. We then assign sj to the aspect with which it
has the highest cosine similarity score.

All the aspects are finally ranked according to the number
of search results they have. Within each aspect, the search
results are ranked according to their original search engine
ranking.

5. DATA COLLECTION
We construct our data set based on the MSN search log

data set released by the Microsoft Live Labs in 2006 [14].
In total, this log data spans 31 days from 05/01/2006 to
05/31/2006. There are 8,144,000 queries, 3,441,000 distinct
queries, and 4,649,000 distinct URLs in the raw data.

To test our algorithm, we separate the whole data set into
two parts according to the time: the first 2/3 data is used
to simulate the historical data that a search engine accumu-
lated, and we use the last 1/3 to simulate future queries.
In the history collection, we clean the data by only keep-
ing those frequent, well-formatted, English queries (queries
which only contain characters ‘a’, ‘b’, ..., ‘z’, and space, and
appear more than 5 times). After cleaning, we get 169,057
unique queries in our history data collection totally. On
average, each query has 3.5 distinct clicks. We build the
“pseudo-documents” for all these queries as described in
Section 3. The average length of these pseudo-documents
is 68 words and the total data size of our history collection
is 129MB.

We construct our test data from the last 1/3 data. Ac-
cording to the time, we separate this data into two test sets
equally for cross-validation to set parameters. For each test
set, we use every session as a test case. Each session con-
tains a single query and several clicks. (Note that we do not
aggregate sessions for test cases. Different test cases may
have the same queries but possibly different clicks.) Since it
is infeasible to ask the original user who submitted a query
to judge the results for the query, we follow the work [11]
and opt to use the clicks associated with the query in a
session to approximate relevant documents. Using clicks as
judgments, we can then compare different algorithms for or-
ganizing search results to see how well these algorithms can
help users reach the clicked URLs.

Organizing search results into different aspects is expected
to help informational queries. It thus makes sense to focus
on the informational queries in our evaluation. For each
test case, i.e., each session, we count the number of different
clicks and filter out those test cases with fewer than 4 clicks
under the assumption that a query with more clicks is more
likely to be an informational query. Since we want to test
whether our algorithm can learn from the past queries, we
also filter out those test cases whose queries can not retrieve
at least 100 pseudo-documents from our history collection.
Finally, we obtain 172 and 177 test cases in the first and



second test sets respectively. On average, we have 6.23 and
5.89 clicks for each test case in the two test sets respectively.

6. EXPERIMENTS
In the section, we describe our experiments on the search

result organization based past search engine logs.

6.1 Experimental Design
We use two baseline methods to evaluate the proposed

method for organizing search results. For each test case,
the first method is the default ranked list from a search
engine (baseline). The second method is to organize the
search results by clustering them (cluster-based). For fair
comparison, we use the same clustering algorithm as our log-
based method (i.e., star clustering). That is, we treat each
search result as a document, construct the similarity graph,
and find the star-shaped clusters. We compare our method
(log-based) with the two baseline methods in the following
experiments. For both cluster-based and log-based methods,
the search results within each cluster is ranked based on their
original ranking given by the search engine.

To compare different result organization methods, we adopt
a similar method as in the paper [9]. That is, we compare the
quality (e.g., precision) of the best cluster, which is defined
as the one with the largest number of relevant documents.
Organizing search results into clusters is to help users navi-
gate into relevant documents quickly. The above metric is to
simulate a scenario when users always choose the right clus-
ter and look into it. Specifically, we download and organize
the top 100 search results into aspects for each test case. We
use Precision at 5 documents (P@5) in the best cluster as
the primary measure to compare different methods. P@5 is
a very meaningful measure as it tells us the perceived preci-
sion when the user opens a cluster and looks at the first 5
documents. We also use Mean Reciprocal Rank (MRR) as
another metric. MRR is calculated as

MRR =
1

|T |

�

q∈T

1

rq

where T is a set of test queries, rq is the rank of the first
relevant document for q.

To give a fair comparison across different organization al-
gorithms, we force both cluster-based and log-based meth-
ods to output the same number of aspects and force each
search result to be in one and only one aspect. The num-
ber of aspects is fixed at 10 in all the following experiments.
The star clustering algorithm can output different number
of clusters for different input. To constrain the number of
clusters to 10, we order all the clusters by their sizes, select
the top 10 as aspect candidates. We then re-assign each
search result to one of these selected 10 aspects that has
the highest similarity score with the corresponding aspect
centroid. In our experiments, we observe that the sizes of
the best clusters are all larger than 5, and this ensures that
P@5 is a meaningful metric.

6.2 Experimental Results
Our main hypothesis is that organizing search results based

on the users’ interests learned from a search log data set is
more beneficial than to organize results using a simple list
or cluster search results. In the following, we test our hy-
pothesis from two perspectives – organization and labeling.

Method Test set 1 Test set 2
MRR P@5 MRR P@5

Baseline 0.7347 0.3325 0.7393 0.3288
Cluster-based 0.7735 0.3162 0.7666 0.2994

Log-based 0.7833 0.3534 0.7697 0.3389

Cluster/Baseline 5.28% -4.87% 3.69% -8.93%
Log/Baseline 6.62% 6.31% 4.10% 3.09%
Log/Cluster 1.27% 11.76% 0.40% 13.20%

Table 2: Comparison of different methods by MMR

and P@5. We also show the percentage of relative

improvement in the lower part.

Comparison Test set 1 Test set 2
Impr./Decr. Impr./Decr.

Cluster/Baseline 53/55 50/64
Log/Baseline 55/44 60/45
Log/Cluster 68/47 69/44

Table 3: Pairwise comparison w.r.t the number of

test cases whose P@5’s are improved versus de-

creased w.r.t the baseline.

6.2.1 Overall performance
We compare three methods, basic search engine rank-

ing (baseline), traditional clustering based method (cluster-
based), and our log based method (log-based), in Table 2 us-
ing MRR and P@5. We optimize the parameter σ’s for each
collection individually based on P@5 values. This shows the
best performance that each method can achieve. In this ta-
ble, we can see that in both test collections, our method
is better than both the “baseline” and the “cluster-based”
methods. For example, in the first test collection, the base-
line method of MMR is 0.734, the cluster-based method is
0.773 and our method is 0.783. We achieve higher accu-
racy than both cluster-based method (1.27% improvement)
and the baseline method (6.62% improvement). The P@5
values are 0.332 for the baseline, 0.316 for cluster-based
method, but 0.353 for our method. Our method improves
over the baseline by 6.31%, while the cluster-based method
even decreases the accuracy. This is because cluster-based
method organizes the search results only based on the con-
tents. Thus it could organize the results differently from
users’ preferences. This confirms our hypothesis of the bias
of the cluster-based method. Comparing our method with
the cluster-based method, we achieve significant improve-
ment on both test collections. The p-values of the signifi-
cance tests based on P@5 on both collections are 0.01 and
0.02 respectively. This shows that our log-based method is
effective to learn users’ preferences from the past query his-
tory, and thus it can organize the search results in a more
useful way to users.

We showed the optimal results above. To test the sensi-
tivity of the parameter σ of our log-based method, we use
one of the test sets to tune the parameter to be optimal
and then use the tuned parameter on the other set. We
compare this result (log tuned outside) with the optimal re-
sults of both cluster-based (cluster optimized) and log-based
methods (log optimized) in Figure 1. We can see that, as
expected, the performance using the parameter tuned on a
separate set is worse than the optimal performance. How-
ever, our method still performs much better than the optimal

results of cluster-based method on both test collections.
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Figure 2: The correlation between performance

change and result diversity.

In Table 3, we show pairwise comparisons of the three
methods in terms of the numbers of test cases for which
P@5 is increased versus decreased. We can see that our
method improves more test cases compared with the other
two methods. In the next section, we show more detailed
analysis to see what types of test cases can be improved by
our method.

6.2.2 Detailed Analysis
To better understand the cases where our log-based method

can improve the accuracy, we test two properties: result di-
versity and query difficulty. All the analysis below is based
on test set 1.

Diversity Analysis: Intuitively, organizing search re-
sults into different aspects is more beneficial to those queries
whose results are more diverse, as for such queries, the re-
sults tend to form two or more big clusters. In order to
test the hypothesis that log-based method help more those
queries with diverse results, we compute the size ratios of
the biggest and second biggest clusters in our log-based re-
sults and use this ratio as an indicator of diversity. If the
ratio is small, it means that the first two clusters have a
small difference thus the results are more diverse. In this
case, we would expect our method to help more. The re-
sults are shown in Figure 2. In this figure, we partition the
ratios into 4 bins. The 4 bins correspond to the ratio ranges
[1, 2), [2, 3), [3, 4), and [4, +∞) respectively. ([i, j) means
that i ≤ ratio < j.) In each bin, we count the numbers of
test cases whose P@5’s are improved versus decreased with
respect to the ranking baseline, and plot the numbers in this
figure. We can observe that when the ratio is smaller, the
log-based method can improve more test cases. But when
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Figure 3: The correlation between performance

change and query difficulty.

the ratio is large, the log-based method can not improve
over the baseline. For example, in bin 1, 48 test cases are
improved and 34 are decreased. But in bin 4, all the 4 test
cases are decreased. This confirms our hypothesis that our
method can help more if the query has more diverse results.
This also suggests that we should “turn off” the option of
re-organizing search results if the results are not very diverse
(e.g., as indicated by the cluster size ratio).

Difficulty Analysis: Difficult queries have been studied
in recent years [7, 25, 5]. Here we analyze the effectiveness
of our method in helping difficult queries. We quantify the
query difficulty by the Mean Average Precision (MAP) of
the original search engine ranking for each test case. We
then order the 172 test cases in test set 1 in an increasing
order of MAP values. We partition the test cases into 4 bins
with each having a roughly equal number of test cases. A
small MAP means that the utility of the original ranking is
low. Bin 1 contains those test cases with the lowest MAP’s
and bin 4 contains those test cases with the highest MAP’s.
For each bin, we compute the numbers of test cases whose
P@5’s are improved versus decreased. Figure 3 shows the
results. Clearly, in bin 1, most of the test cases are improved
(24 vs 3), while in bin 4, log-based method may decrease
the performance (3 vs 20). This shows that our method
is more beneficial to difficult queries, which is as expected
since clustering search results is intended to help difficult
queries. This also shows that our method does not really
help easy queries, thus we should turn off our organization
option for easy queries.

6.2.3 Parameter Setting
We examine parameter sensitivity in this section. For the

star clustering algorithm, we study the similarity threshold
parameter σ. For the OKAPI retrieval function, we study
the parameters k1 and b. We also study the impact of the
number of past queries retrieved in our log-based method.

Figure 4 shows the impact of the parameter σ for both
cluster-based and log-based methods on both test sets. We
vary σ from 0.05 to 0.3 with step 0.05. Figure 4 shows that
the performance is not very sensitive to the parameter σ. We
can always obtain the best result in range 0.1 ≤ σ ≤ 0.25.

In Table 4, we show the impact of OKAPI parameters.
We vary k1 from 1.0 to 2.0 with step 0.2 and b from 0 to
1 with step 0.2. From this table, it is clear that P@5 is
also not very sensitive to the parameter setting. Most of the
values are larger than 0.35. The default values k1 = 1.2 and
b = 0.8 give approximately optimal results.

We further study the impact of the amount of history
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Figure 4: The impact of similarity threshold σ on

both cluster-based and log-based methods. We show

the result on both test collections.

b

0.0 0.2 0.4 0.6 0.8 1.0
1.0 0.3476 0.3406 0.3453 0.3616 0.3500 0.3453
1.2 0.3418 0.3383 0.3453 0.3593 0.3534 0.3546

k1 1.4 0.3337 0.3430 0.3476 0.3604 0.3546 0.3465
1.6 0.3476 0.3418 0.3523 0.3534 0.3581 0.3476
1.8 0.3465 0.3418 0.3546 0.3558 0.3616 0.3476
2.0 0.3453 0.3500 0.3534 0.3558 0.3569 0.3546

Table 4: Impact of OKAPI parameters k1 and b.

information to learn from by varying the number of past
queries to be retrieved for learning aspects. The results on
both test collections are shown in Figure 5. We can see
that the performance gradually increases as we enlarge the
number of past queries retrieved. Thus our method could
potentially learn more as we accumulate more history. More
importantly, as time goes, more and more queries will have
sufficient history, so we can improve more and more queries.

6.2.4 An Illustrative Example
We use the query “area codes” to show the difference in

the results of the log-based method and the cluster-based
method. This query may mean “phone codes” or “zip codes”.
Table 5 shows the representative keywords extracted from
the three biggest clusters of both methods. In the cluster-
based method, the results are partitioned based on locations:
local or international. In the log-based method, the results
are disambiguated into two senses: “phone codes” or “zip
codes”. While both are reasonable partitions, our evalua-
tion indicates that most users using such a query are often
interested in either “phone codes” or “zip codes.” since the
P@5 values of cluster-based and log-based methods are 0.2
and 0.6, respectively. Therefore our log-based method is
more effective in helping users to navigate into their desired
results.

Cluster-based method Log-based method

city, state telephone, city, international
local, area phone, dialing

international zip, postal

Table 5: An example showing the difference between

the cluster-based method and our log-based method
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Figure 5: The impact of the number of past queries

retrieved.

6.2.5 Labeling Comparison
We now compare the labels between the cluster-based

method and log-based method. The cluster-based method
has to rely on the keywords extracted from the snippets to
construct the label for each cluster. Our log-based method
can avoid this difficulty by taking advantage of queries. Specif-
ically, for the cluster-based method, we count the frequency
of a keyword appearing in a cluster and use the most fre-
quent keywords as the cluster label. For log-based method,
we use the center of each star cluster as the label for the
corresponding cluster.

In general, it is not easy to quantify the readability of a
cluster label automatically. We use examples to show the
difference between the cluster-based and the log-based meth-
ods. In Table 6, we list the labels of the top 5 clusters for
two examples “jaguar” and “apple”. For the cluster-based
method, we separate keywords by commas since they do not
form a phrase. From this table, we can see that our log-based
method gives more readable labels because it generates la-
bels based on users’ queries. This is another advantage of
our way of organizing search results over the clustering ap-
proach.

Label comparison for query “jaguar”
Log-based method Cluster-based method
1. jaguar animal 1. jaguar, auto, accessories
2. jaguar auto accessories 2. jaguar, type, prices
3. jaguar cats 3. jaguar, panthera, cats
4. jaguar repair 4. jaguar, services, boston
5. jaguar animal pictures 5. jaguar, collection, apparel

Label comparison for query “apple”
Log-based method Cluster-based method
1. apple computer 1. apple, support, product
2. apple ipod 2. apple, site, computer
3. apple crisp recipe 3. apple, world, visit
4. fresh apple cake 4. apple, ipod, amazon
5. apple laptop 5. apple, products, news

Table 6: Cluster label comparison.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we studied the problem of organizing search

results in a user-oriented manner. To attain this goal, we
rely on search engine logs to learn interesting aspects from
users’ perspective. Given a query, we retrieve its related



queries from past query history, learn the aspects by clus-
tering the past queries and the associated clickthrough in-
formation, and categorize the search results into the aspects
learned. We compared our log-based method with the tra-
ditional cluster-based method and the baseline of search en-
gine ranking. The experiments show that our log-based
method can consistently outperform cluster-based method
and improve over the ranking baseline, especially when the
queries are difficult or the search results are diverse. Fur-
thermore, our log-based method can generate more mean-
ingful aspect labels than the cluster labels generated based
on search results when we cluster search results.

There are several interesting directions for further extend-
ing our work: First, although our experiment results have
clearly shown promise of the idea of learning from search
logs to organize search results, the methods we have exper-
imented with are relatively simple. It would be interesting
to explore other potentially more effective methods. In par-
ticular, we hope to develop probabilistic models for learning
aspects and organizing results simultaneously. Second, with
the proposed way of organizing search results, we can ex-
pect to obtain informative feedback information from a user
(e.g., the aspect chosen by a user to view). It would thus
be interesting to study how to further improve the organi-
zation of the results based on such feedback information.
Finally, we can combine a general search log with any per-
sonal search log to customize and optimize the organization
of search results for each individual user.
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