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ABSTRACT
Web search ranking functions are typically learned to rank
search results based on features of individual documents,
i.e., pointwise features. Hence, the rich relationships among
documents, which contain multiple types of useful informa-
tion, are either totally ignored or just explored very limit-
edly. In this paper, we propose to explore multiple pairwise
relationships between documents in a learning setting to re-

rank search results. In particular, we use a set of pairwise

features to capture various kinds of pairwise relationships
and design two machine learned re-ranking methods to effec-
tively combine these features with a base ranking function: a
pairwise comparison method and a pairwise function decom-
position method. Furthermore, we propose several schemes
to estimate the potential gains of our re-ranking methods
on each query and selectively apply them to queries with
high confidence. Our experiments on a large scale commer-
cial search engine editorial data set show that considering
multiple pairwise relationships is quite beneficial and our
proposed methods can achieve significant gain over methods
which only consider pointwise features or a single type of
pairwise relationship.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; I.2.6 [Artificial Intelligence]:
Learning

General Terms
Algorithms, Design, Experimentation
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Figure 1: Search results for query “WSDM”

1. INTRODUCTION
Commercial web search engines rely on fine-tuned ranking

functions to select search results and thus designing good
functions is critical for the success of search engines. Re-
cently, learning to rank techniques have been studied exten-
sively and different learning methods have been proposed [3,
4, 5, 23, 25, 27]. An effective ranking function does not only
depend on appropriate learning algorithms but also infor-
mative features.

The most commonly used features are pointwise features,
i.e., a set of features defined for individual documents. This
type of features can be computed easily and a ranking func-
tion trained on these features is reasonably effective. How-
ever, such a ranking function can be still coarse due to the
limited information captured by pointwise features. For ex-
ample, in Figure 1, a ranking function trained on pointwise
features can return a relevant result for query “WSDM”, but
it is in the third position. To bring this document to the top
position, more rich features such as pairwise click preference
features in a certain time period can be considered.

Indeed, many research works have been proposed to lever-
age additional resources for learning to rank, notably click
logs. A common strategy is to estimate useful signals from
click logs [19] and use them as surrogate relevance labels [18,
7, 9, 11] or to define, usually pointwise, ranking features [1,
17, 6]. Besides click logs, there are other data sources which
contain different types of pairwise relationships such as parent-
child hyperlink relationship and inter-document similarity
relationship. Even for a single data source such as click
logs, multiple pairwise preference relationships can be ex-
tracted. These pairwise relationships (e.g., SkipAbove) have
been shown to be more reliable than pointwise ones (e.g.,
click counts) [19] and thus provide valuable information for
learning to rank. Unfortunately, few work has fully explored



them in a unified way. For example, only click logs were used
to derive surrogate relevance labels in [18]. [22] and [21] ex-
plored document pairwise relationship to regularize the doc-
ument ranking scores. [24] and [15] used the concatenated
two document feature vectors as pairwise features. One lim-
itation of these works is that only a single type of pairwise
relationship is experimented with.

In this paper, we explore multiple pairwise relationships
among documents for learning to rank. However, there are
several challenges that need to be addressed. (1) Pairwise
relationship can be affinitive (e.g., similar documents) or dis-
criminative (e.g., SkipAbove) and each pairwise relationship
can be noisy in a different way. How to combine multiple
relationships together to complement each other is nontriv-
ial. (2) Given n documents, the pairwise information has an
order of O(n2) space complexity. It is impractical to handle
such large information in the web scale.

To tackle the first challenge, we use pairwise feature vec-
tors to capture various kinds of pairwise relationships, where
each entry in a pairwise feature vector can correspond to
a pairwise relationship, and use learning algorithms to op-
timally combine them. Note this is different from most of
existing learning to rank work such as [18] where discrimina-
tive pairwise relationships are used as surrogate of editorial
labels, instead of features. To tackle the second challenge,
we utilize a re-ranking strategy by training a second ranking
function using the pairwise features to re-rank the top re-
sults of a base ranking function. We specifically propose two
machine learned re-ranking methods: a pairwise compari-
son method and a pairwise function decomposition method.
Furthermore, we propose several schemes to estimate the po-
tential gains of our re-ranking methods on each query and
selectively apply them to queries with high confidence. Our
experiments on a large scale commercial search engine ed-
itorial data set show that considering multiple pairwise re-
lationships is quite beneficial and we can achieve significant
gain over methods which only consider pointwise features or
a single type of pairwise relationship.

The rest of the paper is organized as follows. In Section
2, we introduce related work. We define our problem in
Section 3 and describe our re-ranking algorithms in Section
4. In Section 5, we describe our schemes to estimate the
potential gain for each query. We present our experimental
results in Section 6 and conclude our paper in Section 7.

2. RELATED WORK
In recent years, the web search ranking is usually formu-

lated as a supervised machine learning problem, i.e., learn-
ing to rank. These approaches are capable of combining
different kinds of features to train ranking functions. The
existing methods can be categorized into local ranking and
global ranking.

2.1 Local Ranking
The category of local ranking has been studied for a while

[18, 4, 12, 25, 8, 26, 14]. In this category, only pointwise fea-
tures are considered and the learning is to optimize towards
the pairwise preference labels, usually formulated as regres-
sion or classification problems. For example, RankSVM [18]
uses support vector machines to learn a ranking function
from preference data. RankNet [4] applies neural network
and gradient descent to obtain a ranking function. Rank-
Boost [12] applies the idea of boosting to construct an effi-

cient ranking function from a set of weak ranking functions.
The studies reported in [26] proposed a framework called
GBRank using gradient descent in function spaces. Since
no pairwise feature is considered, this type of methods are
usually efficient but the learning capability is limited.

2.2 Global Ranking
Our re-ranking frameworks are more related to the cate-

gory of global ranking. In global ranking, a ranking model
takes all the documents as input and predict their ranking
scores jointly. In general, a ranking model F is in the form
of

y = F (X)

where X = {x1, . . . ,xn} represents the feature vectors cor-
responding to all the n documents in consideration and y =
{y1, . . . , yn} represents the ranking scores assigned to the
documents. Some work such as [5] defines the loss function
in listwise based on pointwise features. Other existing global
ranking algorithms exploit relationships among objects [6,
10, 15, 17, 21, 22, 24] but in a very limited way. Typically,
these approaches rely on a single type of relationship among
objects or the simple concatenation of pointwise features.

Specifically, [6] uses user clicks to re-rank top search re-
sults based on Click Chain Model (CCM), but only click in-
formation is considered. [10] only explores the inter-document
similarity to regularize initial ranking scores to improve the
relevance of ranking. Recently, ranking based on contin-
uous conditional random fields [21] and ranking relational
objects [22] are also proposed to explore the inter-document
relationship to regularize ranking scores but formulated in a
learning framework. Their ranking models are in the form
of

y = F (H(X; ω),R) (1)

where X = {x1, . . . ,xn} represents feature vectors and R
denotes an n × n matrix representing relationships among
the n objects. Then, F is defined to be a solution of the
following minimization problem.

F (H(X; ω),R) = arg min
z

{l1(H(X; ω), z) + βl2(R, z)} (2)

where z denotes a vector of any possible ranking scores for
the documents. The first objective l1 measures the difference
between H and z and the second objective l2 measures the
inconsistency between elements in z under the relationship
matrix R. β is a non-negative coefficient that controls the
trade-off between the two objectives. Solving the minimiza-
tion problem corresponds to finding the best parameters ω.
The first objective l1(H(X; ω), z) is simply ||H(X; ω) − z||2

where ||.|| denotes L2 norm. However, the second objective
l2(R, z) is defined differently for each ranking task (pseudo
relevance feedback or topic distillation) in their papers. Al-
though in principle it is possible to explore different rela-
tionships in their framework, careful design of different l2
functions for each relationship is needed to differentiate dif-
ferent relationships. If the same l2 is used, it is equivalent to
collapse several relationships into a single one. In contrast,
in our model, various types of pairwise relationships among
documents can be leveraged by representing them as pair-
wise features and this has not been explored in the above
models.

Our specific methods are closely related to Ranking by
Pairwise Comparison (RPC) [15] and BoltzRank [24]. RPC



is similar to our pairwise comparison method (Section 4.1)
since they both perform two steps for ranking: (i) they first
learn pairwise preferences and (ii) they combine the pairwise
preferences into a ranking. Also, BoltzRank is similar to our
pairwise function decomposition method (Section 4.2) since
they both decompose a ranking model into two parts: (i)
individual potential and (ii) pairwise potential. We adapt
these methods for the re-ranking problem. The major dif-
ference is our use of a base ranking function. Compared
to RPC, our pairwise comparison method performs a lo-
cal search to minimize an objective function, which is made
feasible by leveraging a base ranking function. In our pair-
wise function decomposition method, we use a base ranking
function as individual potential. The number of training in-
stances for BoltzRank is O(Qn2) where Q is the number of
queries and n is the number of documents for each query.
Thus, we may not be able to use a huge number of queries
in the training data, which is not desirable for the gener-
alization ability of ranking models. On the other hand, we
can use much more queries in the training data for a base
ranking function. Hence, we can add more robustness to
our models by incorporating a base ranking function. More
importantly, our work uses multiple much more meaningful
pairwise features (Section 3.2) while RPC and BoltzRank
rely on the simple concatenation of pointwise features as
the single pairwise feature.

3. PROBLEM FORMULATION
We formally define our problem in this section. We first re-

view the learning to rank based on pointwise features. Then
we introduce our pairwise relationships, define features upon
these relationships, and describe our problem of learning to
re-rank.

3.1 Learning to Rank on Pointwise Features
Conventional learning to rank depends on pointwise fea-

tures, i.e., a set of features defined for individual documents.
Given a query q, let Dq = {x1, . . . ,xn} denote the fea-
ture vectors of all the documents to be ranked, where each
xi ∈ R

d has d dimensions. For simplicity, we omit a nota-
tion of q and use D to represent Dq when it is clear from
the context. In a ranking problem, D is given as input and
a permutation τ of {1, . . . , n} is returned as output. xi is
ranked higher than xj if τ(xi) < τ(xj) and this means xi is
more relevant to q than xj . In a typical web search ranking
problem, a ranking function f : R

d → R is typically trained
and applied to D. A permutation or ranking τ is generated
by ordering the f(x) in the descending order.

In most existing work, x only consists of pointwise fea-
tures such as the TF-IDF matching score between the query
and the document. We use b to denote such a base rank-
ing function. A ranking function trained on these features
is reasonably effective. However, pointwise features might
not be good enough since the web search problem is admit-
ted to be very complex. On the other hand, there are rich
pairwise relationships between documents. In the next sec-
tion, we define our pairwise features based on the pairwise
relationships.

3.2 Pairwise Features
In this section, we present several types of pairwise rela-

tionships between documents and then define our pairwise
features to capture these relationships.

3.2.1 Pairwise Click Preference
Click logs represent an important source of users’ rele-

vance feedback and have been used for estimating document
relevance [19] or deriving pointwise features [17]. We are in-
terested in using click logs to discover relative preference
information. As shown in [19], click based relative prefer-
ence is more accurate than absolute preference. However,
relative preference is still too noisy to be used as training
labels. Instead, we use them as features. Given ui and uj ,
a discriminative feature should be able to differentiate their
relevance to a query with high confidence. To this end, we
define and collect the following pairwise click features:

• ccij : the number of sessions in which both ui and uj

were clicked
• cncij : the number of sessions in which ui was clicked

but uj was not clicked
• nccij : the number of sessions in which ui was not

clicked but uj was clicked
• ti: the average dwell time on ui

• tj : the average dwell time on uj

where a session is defined for a unique (user, query) pair.
The session starts when a user issues a query and ends after a
certain idle time on the user side or the user issues a different
query.

While each individual features can be noisy, the combi-
nation of these features provides a more direct and reliable
relevance comparison of two documents. Note that we in-
clude dwell time information of documents to deal with noisy
clicks. Clicks are more correlated to perceived relevance

on search results pages than the true document relevance:
many clicks are due to attractive presentation or the high
position of documents on the results page. Some unrelevant
documents may be clicked but then users leave shortly. The
dwell time information can be used to calibrate these noisy
clicks.

3.2.2 Document Similarity
The similarity between two documents has been exten-

sively studied in information retrieval. It has recently been
used for adjusting base ranking scores [10]. We assume that
documents that are similar to relevant documents are likely
to be relevant, due to the clustering hypothesis [16]. Under
this assumption, we may boost some documents based on
the document-document similarity after a base ranking is de-
cided. However, in contrast to [10] which use the document
similarity as a single re-ranking signal, we define several pair-
wise features based on document similarity and further com-
bine them with other re-ranking features in our models. The
following is some examples of similarity features:

• sim(ui, uj): the similarity between ui and uj

• sim(u, +): the similarity between u and the docu-
ment(s) that received the most positive feedback in
click logs

• sim(u,−): the similarity between u and the docu-
ment(s) that received the most negative feedback in
click logs

sim(u, +) and sim(u,−) can be easily computed from click
logs. For example, a document with a negative feedback
can be identified by SkipAbove information [20]: for two
documents ui and uj where ui is ranked higher than uj ,
but ui is not clicked while uj is clicked. we regard that ui

received negative feedback.



3.2.3 Parent-child Relationship
It is common that a web page and some of its child pages

appear together in a search results page. Let ui and uj be
two web pages under the same website. ui is said to be a par-
ent of uj if the url of ui is a prefix of that of uj . Symmetri-
cally, we call uj a child of ui. In general, search engines tend
to rank parent pages higher than their child pages. However,
this bias is incorrect when a parent page is too general for
a given query while a child page matches the query better.
Consider a query “carmax used”. Most commercial search
engines rank the parent page www.carmax.com before the
child page www.carmax.com/enUS/car-search/used-cars.html
in the first results page. It is clear that this ranking is not
optimal since the user is intended to find “used” cars in the
child page. We can use the simple ternary feature

pcij =

8

<

:

1 if ui is a parent of uj ,

−1 if ui is a child of uj ,

0 otherwise

to represent the parent-child relationship.

3.2.4 Concatenated Pointwise Features
Let xi = [xi1, . . . , xid] be a pointwise feature vector of

document ui. Then, we can define a simple pairwise feature
vector between ui and uj by literally concatenate the two
pointwise feature vectors:

xij = [xi,xj ]

Actually, this is the only pairwise feature used in [15]. We
also tried to define the difference or ratio between two point-
wise feature vectors as a new pairwise feature. However, in
our feature selection process, we have observed that this type
of feature is not very useful.

3.3 Learning to Re-Rank on Pairwise Features
Most of the above features (except for the features in Sec-

tion 3.2.4) are inherently pairwise and they are very difficult,
if ever possible, to be derived from pointwise features. Ob-
viously, these true pairwise features can be hardly used for
a base ranking function since they are defined in terms of
document pairs.

Let Pq = {wxixj
| xi,xj ∈ Dq,xi 6= xj} be the set of

pairwise feature vectors for a query q where wxixj
∈ R

dp

concatenates all the features defined in Section 3.2 between
document xi and xj . A direct way of utilizing these features
is to concatenate the pairwise feature vectors with the point-
wise feature vectors together and then train a giant ranking
function. This is obviously impractical in both training and
ranking. We thus propose a re-ranking strategy to combine
these pairwise features with a base ranking function trained
on pointwise features.

Formally, given a ranking list τb of top n results obtained
from the base ranking function b, our goal is to learn a re-
ranking policy r that produces a new ranking τr by consid-
ering pairwise features P = {Pq | q is a training query}.

Note that the above formulation of re-ranking is more
general than global ranking described in Section 2.2 and
any types of pairwise relationships between documents can
be used in this framework. Furthermore, in our re-ranking
problem, it is not necessary to assign a new ranking score for
each document and then produce τr. In the following, we
present two algorithms: the pairwise comparison method,
which directly generates the permutation, and the pairwise

function decomposition method, which first generates new
ranking scores and then derives a new permutation.

4. LEARNING TO RE-RANK ALGORITHMS
In this section, we present our learning to re-rank ap-

proaches based on pairwise features between documents.

4.1 Pairwise Comparison Method
In this section, we introduce a straightforward approach

which learns the relative relevance for document pairs and
then re-ranks results to minimize the number of discordant
pairs.

4.1.1 Learning Pairwise Preferences
The goal of this section is to learn a function that pre-

dicts the probability that xi is more relevant than xj to a
query. Given all the pairwise features, we have the following
training data for each training query:

Tq = {wxixj
, pref(li, lj) | i, j ∈ {1, . . . , N}, i 6= j}

where li is a numerical label given by human editors to xi

out of a finite set of labels L (e.g., L = {4, 3, 2, 1, 0}) and
pref(li, lj) is interpreted as the probability p(xi ≻ xj) that
xi is more relevant than xj . A simple way to set pref(li, lj)
is

pref(li, lj) =

8

<

:

1 li > lj
0.5 li = lj
0 li < lj .

Then, we could solve a regression problem with the training
data and interpret the response of the prediction as a proba-
bility. However, this method ignores the difference between
li and lj . Alternatively, we may compute pref(li, lj) based
on the difference li − lj . By doing so, we are assuming that
there is some uncertainty in labels li and lj . In a typical
process of obtaining labels, human editors are restricted to
choose one label out of a small, predefined set. Suppose
that an editor gave xi the label 3. If the editor were allowed
to give a real value (not restricted to the predefined set) to
the document, the possible values of the label would form
a distribution with the average around 3. Also, the labels
are noisy because editors often make incorrect judgments or
their judgments can be subjective.

We model the uncertainty of the pointwise labels as fol-
lows. We define a random variable Rl for each label l ∈ L

and assume a Gaussian distribution for each Rl:

p(Rl) = N (Rl | l, σ
2
l )

Although we may try to estimate the variance σl for each
l ∈ L, we make an assumption that we have a common
variance σ for all l ∈ L.

Given these random variables, it is straightforward to de-
rive the pairwise preference probability pref(li, lj):

pref(li, lj) = p(xi ≻ xj)

= p(Rli > Rlj )

= p(Rli − Rlj > 0)

=

Z ∞

0

N (Rl | li − lj , 2σ
2)dRl

We choose σ such that pref(lmax, lmin) = 1 where lmax

is the largest label and lmin is the smallest label in L. We



Algorithm 1 Greedy algorithm to re-ranking search results
with pairwise preferences

Input: {x1, . . . ,xn}, b(x), h(wxy)
Output: A new ranking τr of {x1, . . . ,xn}
1: Let τb be the ranking of {x1, . . . ,xn} given by b.
2: Initialize τr = τb

3: s =
P

τr(xi)>τr(xj) h(wxixj
)

4: while True do
5: improved = False
6: for i = 1 to n − 1 do
7: for j = i + 1 to n do
8: τ ′

r = τr with i and j swapped
9: s′ =

P

τ ′

r(xi)>τ ′

r(xj) h(wxixj
)

10: if s′ < s then
11: s = s′, si = i, sj = j

12: improved = True
13: end if
14: end for
15: end for
16: if improved then
17: Update τr: swap τr(xsi

) and τr(xsj
).

18: else
19: break
20: end if
21: end while
22: return τr

then apply the gradient boosting method (GBDT) [13] on
our training data {Tq | q is a training query} to obtain a
function h(wxy) which can predict the relative relevance of
two documents to a query.

4.1.2 Re-ranking with Pairwise Preferences
We propose an algorithm for re-ranking results using the

pairwise preference function h(wxy). Given a ranking list
τb of top n results obtained from the base ranking func-
tion b, a straightforward way of re-ranking results using the
pairwise preference function h(wxy) is to swap x and y if
τb(x) > τb(y) and h(wxy) > α where α > 0.5 is a parame-
ter that controls the confidence of swapping. A more prin-
cipled way of re-ranking is to derive an objective function
defined in terms of h(wxy) and find a ranking that optimizes
the objective function. We minimize the following objective
function

τr = arg min
X

τr(xi)>τr(xj)

h(wxixj
). (3)

It is known that finding the optimal solution that mini-
mizes (3) is NP complete [2]. Hence, we propose a greedy
algorithm to minimize (3) in Algorithm 1. We start from a
base ranking τr = τb. At each step, we generate a candidate
ranking τ ′

r by swapping two documents in τr. We evaluate
the objective function value for each candidate ranking and
select the best one. If the best ranking improves the current
ranking τr, we take it to the next step. We repeat this until
we cannot improve the ranking further.

The time complexity of Algorithm 1 is O(mn4p) where
m is the number of iterations and p is the time to compute
each h. The time complexity can be reduced by the following
heuristics: (1) At each iteration, we may sort the list of can-
didate swaps by h values and try the candidate with highest

value first. (2) We can reduce the number of steps required
to compute s′ in line 9 from O(n2p) to O(np) using a dif-
ferential update since τr and τ ′

r differ only in two positions
and we just need to make adjustments for the terms that
are affected: all the documents between τr(xi) and τr(xj).
Thus, the overall time complexity (worst-case) is reduced to
O(mn3p). We perform the differential update for s′ as fol-
lows. To simplify the description, we need to use the inverse
τ−1 of a permutation τ (note that a permutation τ is a bijec-
tion from documents to positions): τ−1(i) is the document
at position i. Assume that τr(xi) < τr(xj). Then, we have

s
′ = s −

n

h(w
τ
−1
r (τr(i)+1)xi

) + . . . + h(wxjxi
)
o

−
n

h(w
xjτ

−1
r (τr(i)+1)

) + . . . + h(w
xjτ

−1
r (τr(j)−1)

)
o

+
n

h(w
τ
−1
r (τr(i)+1)xj

) + . . . + h(wxixj
)
o

+
n

h(w
xiτ

−1
r (τr(i)+1)

) + . . . + h(w
xiτ

−1
r (τr(j)−1)

)
o

.

The number of terms added or subtracted is 4
`

τr(j)−τr(i)
´

−
2. Hence, given the objective function value for τr, the com-
putation of s′ for τ ′

r (line 9) takes O(np) steps instead of
O(n2p) steps.

4.2 Pairwise Function Decomposition Method
The pairwise comparison method may be impractical at

query time unless we re-rank a very small number of docu-
ments or limit the number of iterations in the greedy search
algorithm. Another disadvantage of the pairwise compari-
son method may be that it does not fully leverage the base
ranking function.

In this section, we propose another re-ranking approach,
called pairwise function decomposition method, which pro-
duces a new ranking score for each document by combining
the score of a base ranking function and the pairwise score
adjustments learnt from pairwise features. This method is
more efficient at query time.

4.2.1 Training
We decompose the ranking function into two parts:

f(x) = b(x) +
X

y∈D

h(wxy) (4)

where b is the base ranking function and h is a function
that effectively enforces relative constraints between pairs
of documents. Note that b(x) is a constant value and we
only learn h.

For each query, our training data consists of three parts
(for easy exposition, we omit the notation of query):

• labels: {li}
N
i=1 where li is the label of xi

• scores by the base ranking function: {b(xi)}
N
i=1

• pairwise features: {wxixj
| i, j ∈ {1, . . . , N}, i 6= j}

Given the training data, we learn h by solving the following
optimization problem.

min
h∈H

X

q

X

i∈{1,...,N}

1

2

˘

li − b(xi) −
X

j∈{1,...,N}\{i}

h(wxixj
)
¯2

We enforce the symmetry of h: h(wxixj
)+h(wxjxi

) = 0 and
achieve this by replacing h(wxixj

) by −h(wxjxi
) if i > j.



Algorithm 2 Gradient boosting for pairwise function de-
composition

Input: Training data: {li}
N
i=1, {b(xi)}

N
i=1,

{wxixj
| i, j ∈ {1, . . . , N}, i 6= j}

Output: Gradient boosting trees h(wxy)

1: Initialize h0(wxy) = 1
N

PN

i=1

`

li − b(xi)
´

2: for k = 1, . . . , M do
3: for each (i, j) such that i < j do
4: Compute the negative gradient γk

i,j =

−
h

∂L(h)
∂h(wxixj

)

i

h(wxy)=hk−1(wxy)

5: end for
6: Fit a regression tree function tk to {γk

i,j}i<j

7: Update hk(wxy) = hk−1(wxy) + ηsktk(wxy) where η

is a shrinkage factor and sk is found by the line search
to minimize the loss function.

8: end for
9: return hM (wxy)

Then, we can rewrite the loss function as follows.

L(h) =
X

q

X

i∈{1,...,N}

1

2

˘

li − b(xi) +
X

j<i

h(wxjxi
) −

X

j>i

h(wxixj
)
¯2

Similarly, we apply the gradient boosting method (GBDT)
[13] to solve this optimization problem. Algorithm 2 sum-
marizes our training procedure. The negative gradient γk

i,j

in the algorithm is computed as follows.

γ
k
i,j = −

h ∂L(h)

∂h(wxixj
)

i

h(wxy)=hk−1(wxy)

=
n

li − b(xi) +
X

i′<i

hk−1(wxi′xi
) −

X

i′>i

hk−1(wxixi′
)
o

−
n

lj − b(xj) +
X

j′<j

hk−1(wxj′xj
) −

X

j′>j

hk−1(wxjxj′
)
o

Note that we may use any type of loss function such as
pairwise loss function [27] instead of the regression loss used
above and we leave these exploration to the future.

The pairwise function decomposition method can be more
robust than the pairwise comparison method described in
the previous section. In the pairwise comparison method,
the relative relevance between two documents is determined
only by the two. In contrast, the pairwise function decom-
position method involves all the documents in the result set
to adjust the score of each document, which provides more
robustness.

Re-ranking at query time using the pairwise function de-
composition method is straightforward. The search results
given by the base ranking function b are re-ranked by f in
(4). The time complexity of re-ranking at query time is
O(n2p) where p is the time to compute each h. Compared
to the pairwise comparison method (O(mn3p)), the pairwise
function decomposition method is more efficient.

5. QUERIES WITH HIGHLY RE-RANKABLE
RESULTS

In this section, we seek to identify queries with highly
re-rankable search results. Search results are said to be
highly re-rankable if they have high potential gains after

re-ranking. To estimate potential gains, we can directly rely
on some pairwise relationships or the function h learned by
the pairwise comparison method or the pairwise function
decomposition method. Using these signals, we can control
our confidence in re-ranking. This gives us a knob to trade-
off high accuracy and low coverage or high coverage and low
accuracy.

We propose to use the following four schemes to identify
queries for re-ranking with high confidence.

Scheme 1: Re-rank search results for a query if there
exist a pair of documents xi and xj such that τb(xi) > τb(xj)
and

cncij

nccij
> α where α is a parameter that controls the

confidence of re-ranking.
The condition τb(xi) > τb(xj) and

cncij

nccij
> α means that

users skip xj and click xi in the search results. The higher
α, the more likely xi and xj are swapped in the re-ranked re-
sults. However, coverage of re-ranking (number of impacted
queries) decreases as α increases. Hence, we can control the
trade-off between accuracy and coverage by a single param-
eter α.

Scheme 2: Re-rank search results for a query if there
exist a pair of documents xi and xj such that τb(xi) > τb(xj)
and h(wxixj

) > α where h is the pairwise preference function
in the pairwise comparison method or the pairwise potential
function in the pairwise function decomposition method.

Since h is trained using various pairwise features including
pairwise click features such as cncij and nccij , it should pro-
vide a more robust signal regarding the relationship between
xi and xj .

Scheme 3: Re-rank search results for a query if

 

X

τb(xi)>τb(xj),h(wxixj
)>β

h(wxixj
)

!

> α

where β is 0.5 for the pairwise comparison method and 0
for the pairwise function decomposition method. Note that
h(wxixj

) > 0.5 for the pairwise comparison method implies
that xi is more relevant than xj and h(wxixj

) > 0 for the
pairwise function decomposition method implies that xi is
more relevant than xj . Hence, the value

X

τb(xi)>τb(xj),h(wxixj
)>β

h(wxixj
)

is approximately the improvement in the objective function
(3) after re-ranking (if all the pairs {(xi,xj) | τb(xi) >

τb(xj), h(wxixj
) > β} are swapped). Therefore, we can

control the approximate ranking improvement by α.
Scheme 4: Re-rank search results for a query if

 

X

τb(xi)>τb(xj)

h(wxixj
) −

X

τr(xi)>τr(xj)

h(wxixj
)

!

> α

where τr is the ranking after re-ranking. This scheme uses
the change in the objective function (3) after re-ranking to
estimate the ranking improvement. In order to compute the
value

P

τr(xi)>τr(xj) h(wxixj
), we do not need to actually

trigger re-ranking and change the search results shown to
users. Instead, we can first execute re-ranking in memory
and compute the value of

P

τr(xi)>τr(xj) h(wxixj
). Then,

we can decide whether to actually trigger re-ranking based
on the above condition.



#Train #Test #Feature
base ranking 1.2M 150K 35
re-ranking 5.1M 400K 100
#queries 71K 4K –

Table 1: Statistics of our data sets

Although the computation of scheme 3 and 4 may seem
expensive, the values of h for all the pairs of documents are
used in the re-ranking anyway. Hence, there is no additional
cost when re-ranking is triggered.

For all the above four schemes, we can control the trade-
off between accuracy and coverage by a single parameter
α. How do we determine which query selection scheme and
what value of α to use? We may choose a query selection
scheme and the value of α based on the minimum level of
ranking improvement that we expect. For example, we may
want +10% NDCG5 gain over the base ranking function.
Then, the gain-coverage graph (in Section 6) will determine
a query selection scheme and the minimum value of α to
obtain at least 10% NDCG5 gain for the queries for which
re-ranking is triggered.

6. EXPERIMENTS
In this section, we evaluate our two re-ranking methods

based on pairwise features. The objectives of our experi-
ments are: (1) to evaluate the improvement of search result
accuracy by the proposed re-ranking methods, (2) to ex-
amine the effect of different query selection schemes on the
accuracy and the coverage of the re-ranking methods, and
(3) to compare the usefulness of different classes of features
used in our models.

6.1 Experiment Design

6.1.1 Data Sets
The data sets we use are from a commercial search en-

gine and Table 1 summarizes their statistics. To train a
base ranking function, we use a set of training data (x, l)
where a feature vector x corresponds to a (query, docu-
ment) pair and l is the label given to x using five values,
{4, 3, 2, 1, 0}, representing five levels of relevance: perfect,
excellent, good, fair, and bad. A feature vector x con-
tains query-dependent features, document-dependent fea-
tures and (query, document)-dependent features. We use
the top 35 pointwise features (including some text-matching
features and some click-related features) currently used by
the commercial search engine. In this pointwise training
data, there are 1.2M feature vectors.

To train the pairwise comparison method and the pairwise
function decomposition method, we need (in addition to the
pointwise training data) a set of pairwise feature vectors
wxy and base ranking scores for all x and thus the pairwise
training data is obtained after we train a base ranking func-
tion. For each query, we generate pairwise feature vectors
for pairs of documents (only among top 10 documents in the
base ranking) for that query. We obtain pairwise click pref-
erence features described in Section 3.2.1 from the click logs
of the same search engine. In total, we have 100 pairwise
features: 30 features for pairwise click preference, document
similarity and parent-child relationship and 70 features for
the concatenated pointwise features (35 for each document

in a pair). Note that these pairwise features cannot be used
by a base ranking function, which is a“local” ranking model.
In total, there are 5.1M pairwise feature vectors in our data.

The test data is similarly generated. We have 150K point-
wise feature vectors and 400K pairwise feature vectors in the
test data. In total, we have 71K queries in the training set
and 4K queries in the test set.

6.1.2 Algorithms
For the queries in our test data, we compare their rankings

given by

• Base Ranking Function: gradient boosting trees
model [13] trained with the pointwise training data.

• Pairwise Click-based Swap (PCSwap): simple
re-ranking algorithm using pairwise click features de-
scribed in Section 3.2.1, which is similar to the re-
ranking algorithm proposed in [6]. Two documents xi

and xj are swapped if xi is ranked lower than xj and
cncij

nccij
> α and ti

tj
> β.

• Pairwise Comparison (PC): described in Section
4.1 with different query selection parameters α.

• Pairwise Function Decomposition (PFD): described
in Section 4.2 with different query selection parameters
α.

The base ranking function serves as a strong baseline which
is trained with many well-tuned features used in a commer-
cial search engine. PCSwap is another baseline similar to
a recently proposed re-ranking algorithm [6] and represents
the state-of-the-art algorithm which explores click logs.

6.1.3 Evaluation Metrics
The evaluation is based on three metrics NDCG5, NDCG1

and the pair accuracy. NDCGk is defined to be

NDCGk =
1

Zk

k
X

i=1

Gi

log2(i + 1)

where Gi denotes the label of the document at position i and
Zk represents a normalization factor to guarantee that the
NDCGk for the perfect ranking (among the permutations of
the retrieved documents) is 1.

The pair accuracy is the ratio of correct pairs

{(xi,xj) | τ(xi) < τ(xj), li > lj}

{(xi,xj) | τ(xi) < τ(xj)}
.

A metric is computed for each query and the average values
over all the queries in our test data are reported.

6.2 Results

6.2.1 Relevance Improvement Comparison
We first compare all the algorithms in terms of relevance

improvement. Table 2 shows the results of all the 4 algo-
rithms for all the 3 metrics. Note that we do not use any
query selection scheme described in Section 5. In this table,
we also show the absolute gains of our re-ranking algorithms
against the base ranking function. Our proposed methods
PC and PFD outperform the baseline statistically signif-
icantly. For example, PFD achieves +2.0% NDCG5 gain
(0.015 absolute gain), which is a significant improvement
considering that our base ranking function is comparable to
a commercial search engine function. Compared with our



Table 2: Relevance improvements with no query selection scheme. Statistically significant gains (p ≤ 0.001)
are highlighted in bold. Please note that our 2% NDCG gain is much larger than that reported in [6].

NDCG5 NDCG5 Gain (%) NDCG1 NDCG1 Gain (%) Pair Accuracy Pair Accuracy Gain (%)
Base 0.7434 0 0.7898 0 0.8447 0

PCSwap 0.7464 0.4035 0.7953 0.6964 0.8479 0.3788
PC 0.7545 1.4894 0.8015 1.4769 0.8542 1.1200

PFD 0.7585 2.0281 0.8061 2.0662 0.8535 1.0431
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Figure 2: Improvements for affected queries by PC and PFD with different α values. Scheme 4 is used as
the query selection scheme. PCSwap is also compared using different α and β values. Gains are against the
base ranking function. The graphs show the trade-off between the relevance gain and the query coverage of
re-ranking.
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Figure 3: Comparing query selection schemes. Scheme i is denoted as PC i and PFD i.
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Figure 4: Evaluation of features. NDCG5 is compared for different features used in the training. PC and PFD
use all features. PC 10 pnt and PFD 10 pnt use all pairwise features and 10 pointwise features. PC 0 pnt
and PFD 0 pnt use all pairwise features and no pointwise features. PC only pnt and PFD only pnt use no
pairwise features and all pointwise features. Scheme 4 is used as a query selection scheme.

methods, PCSwap can improve over the baseline but the
improvement is much smaller. In fact, the best absolute
NDCG gain reported in [6] (see their Section 5) is about
0.007 and this is much smaller than our 0.015 absolute gain.
Furthermore, our methods are statistically significantly bet-
ter than PCSwap. This shows that combining multiple types
of pairwise features is beneficial and our proposed methods
are effective to leverage them.

To further analyze our results, we use the query selection
scheme 4 and vary α to show the tradeoff between relevance
improvement and query coverage of our algorithms. For PC-
Swap, we vary α and β to get the tradeoff. Figure 2 shows
the tradeoff curves under different evaluation metrics. Note
that we report relative gains against the base ranking func-
tion instead of absolute metric values. We do not directly
show the values of α in the graph. Instead, for each α value,
we show the gain (against the base ranking function) to-
gether with the number of affected queries. Intuitively, as
the number of affected queries decreases (due to high confi-
dence thresholds set by α), the relevance gain increases.

The results clearly show that PC and PFD significantly
improve all the metrics compared to the base ranking func-
tion. The gains reported for PC and PFD are all statis-
tically significant according to a Wilcoxon sign-rank test
(p ≤ 0.001). It is also clear that both PC and PFD out-
perform a simple re-ranker PCSwap over a wide range of
query coverage.

Compared with PC, we find that PFD performs slightly
better. One possible reason is because PC does not use
the ranking scores of the base ranking function while PFD
can exploit those scores and dynamically adjust the pairwise
feature based prediction function.

These curves show that α is an effective knob to control
the tradeoff. For example, if we want to make sure that we
improve NDCG5 by at least 10%, then we set α > 1.5 and
this will only affect +7% of queries (using PFD). If we want
to have a large coverage of queries, we can lower the value
so that our re-ranking methods can be triggered for more
queries.

6.2.2 Query Selection Scheme Comparison

Figure 3 reports the performances among the four query
selection schemes described in Section 5. For each scheme,
we vary its parameter α with each giving us a tradeoff point
between the relevance improvement and query coverage. A
large α value means a lower query coverage but potentially
higher relevance improvement. From this figure, we can see
that all the 4 methods are demonstrated to be effective to
identify queries with high potential gains. It is also clearly
shown that the more sophisticated schemes (scheme 3 and
4) can outperform the simple ones (scheme 1 and 2) for both
PC and PFD. Scheme 1 does not perform well compared to
other schemes. This is because clicks are noisy: some clicks
are due to perceived relevance (as opposed to landing page
relevance). The results indicate that it is better to employ
signals of multiple pairs of documents (scheme 3 and 4) than
only one pair of documents (scheme 1 and 2).

6.2.3 Feature Effect Comparison
Figure 4 compares NDCG5 for different combinations of

pointwise features and true pairwise features used for train-
ing PC and PFD: all 100 features (denoted as PC and PFD),
30 true pairwise features with 10 concatenated pointwise fea-
tures (denoted as PC 10 pnt and PFD 10 pnt), only 30 true
pairwise features (denoted as PC 0 pnt and PFD 0 pnt),
and only concatenated pointwise features (denoted as PC only pnt
and PFD only pnt). From this figure, we can see that with-
out the true pairwise features (PC only pnt and PFD only pnt),
the performance significantly drops by only using the con-
catenated features like [15]. For PFD, it is clear that the
addition of concatenated pointwise features boosts the per-
formance. For PC, however, pointwise features do not affect
the performance much. Overall, this shows that combining
different types of pairwise relationships is important.

7. CONCLUSION
We have presented two novel machine learned re-ranking

frameworks that can leverage multiple rich pairwise relation-
ships between documents. Furthermore, we propose several
schemes to estimate the potential gains of our re-ranking
methods on each query and selectively apply them to queries



with high confidence. We have demonstrated that our pro-
posed re-ranking methods can significantly improve web search
results for a commercial search engine and a recently pro-
posed click log-based re-ranking algorithm. All these show
the effectiveness of our methods.

In comparison to some previous work [6, 10, 21, 22], a
distinctive feature of our re-ranking methods is their ability
to model complex relationships among documents: different
types of re-ranking signals are specified as features and the
interaction between them is captured in our learning frame-
work. This can inspire interesting research on pairwise fea-
tures such as pairwise feature engineering and selection. In
our re-ranking methods, we have fixed a base ranking func-
tion b when we learn a pairwise function h. An interesting
direction we are investigating is a way of jointly training b

and h.
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