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ABSTRACT
With the explosive growth of online news readership, rec-
ommending interesting news articles to users has become
extremely important. While existing Web services such as
Yahoo! and Digg attract users’ initial clicks by leveraging
various kinds of signals, how to engage such users algorith-
mically after their initial visit is largely under explored. In
this paper, we study the problem of post-click news recom-
mendation. Given that a user has perused a current news
article, our idea is to automatically identify “related” news
articles which the user would like to read afterwards. Specif-
ically, we propose to characterize relatedness between news
articles across four aspects: relevance, novelty, connection
clarity, and transition smoothness. Motivated by this un-
derstanding, we define a set of features to capture each of
these aspects and put forward a learning approach to model
relatedness. In order to quantitatively evaluate our pro-
posed measures and learn a unified relatedness function, we
construct a large test collection based on a four-month com-
mercial news corpus with editorial judgments. The experi-
mental results show that the proposed heuristics can indeed
capture relatedness, and that the learned unified relatedness
function works quite effectively.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
filtering, retrieval models

General Terms
Algorithms

Keywords
Post-click news recommendation, relatedness, learning, con-
nection clarity, transition smoothness, relevance, novelty

1. INTRODUCTION
The recent decade has witnessed an explosive growth of

online news. According to a recent report from comScore
(http://www.comscore.com/), more than 123 million people
visited news websites such as Yahoo! News in May 2010,
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representing 57 percent of the total U.S. internet audience,
with each visitor reading 43 pages on an average. These
numbers have been steadily increasing over the past years
and show the growing appeal of reading news online.

One important advantage of online news over traditional
newspapers is that the former can be augmented with hy-
perlinks to other related news. When a user has clicked and
is reading a current article, he/she may also feel interested
in related articles that logically flow from the content of the
current page. We thus name it post-click news recommenda-
tion, with the goal of potentially promoting users’ navigation
on the visited website. However, on the other hand, if the
recommended articles are not logically related to the current
news, it would probably not only fail to capture user interest,
but also often hurt the user’s overall satisfaction. Therefore,
the effectiveness of post-click news recommendation is crit-
ical to online news websites. While existing Web services
such as Yahoo!, Digg, and Google aim to attract users’ ini-
tial clicks by leveraging various kinds of signals [10, 2], how
to engage with users algorithmically after their initial clicks
is largely under-explored.

In the state of the art, post-click news recommendation is
typically done by editors’ manual effort of searching through
a corpus of news documents. The process is not only ex-
pensive and cumbersome, but may also be limited by the
editors’ familiarity with the news topics. Therefore it is
highly desirable to develop an effective model or function to
deal with the relatedness of news articles and find related
news automatically so as to facilitate post-click news rec-
ommendation. However, to the best of our knowledge, no
existing method has been proposed to model relatedness di-
rectly, other than using a standard information retrieval (IR)
model (e.g., [6, 23]) or using news clustering methods (e.g.,
[35]) to capture similarity/relevance instead. In this paper,
we study this novel, yet fundamental problem which most
online news websites suffer from, and propose effective mod-
els to automatically estimate relatedness for recommending
related news.

What makes a news article related to the current news
article? Presumably, two news articles should be contextu-
ally similar to each other. In this sense, similarity/relevance
would be an important signal of relatedness. This factor can
be captured through standard information retrieval mod-
els, e.g., [31, 28, 24]. However, similarity/relevance is not a
sufficient attribute of the problem at hand, since there are
clear differences between news recommendation and tradi-
tional information retrieval: for a related article to be recom-



mended, it would be encouraged that only a fraction of con-
tent is shared across the articles, while other parts are mostly
about novel news-worthy topics. Nonetheless, IR models
usually favor documents that are very similar to the cur-
rent news (e.g., example 4 in Table 1), yet such documents
are not really related to the need of users given that they
have already read the current news article. Thus, novelty,
a somewhat contrary notion to similarity/relevance, should
also be a signal of relatedness. Since it is well known that
some retrieval functions, e.g., cosine similarity, are also ef-
fective measures for novelty and redundancy detection [39,
3], it would be critical to investigate the performance of
these measures with “dual-roles” in the relatedness function.
Moreover, it is also important to examine if advanced IR
models, e.g., passage retrieval [7, 16, 21], which scores a
document mainly based on the best matching passage, are
more appropriate than standard models in our task.

In addition to the notion of similarity and novelty, we at-
tempt to explicitly capture another key dimension of related-
ness, coherence, using two novel concepts that we introduce
in the following.

First, there should be a clear connection between two doc-
uments to maintain topical continuity. In other words, the
overlap between two documents should be comprised of some
meaningful topical context. However, word overlap that is
able to capture relevance and novelty may not always cap-
ture topical continuity. For the example 5 in Table 1, the
overlap of words like “Obama, million, dollar, · · · ” are not
discriminative enough to represent a specific topic. As a
consequence, the two articles are not connected well. To
capture this heuristic, we propose a new signal, connection
clarity, by estimating the entropy of the language usage be-
hind an overlap so as to measure the uncertainty of topics
shared by two documents.

Second, the stories in two articles should also be of conti-
nuity of senses so that a user’s reading interests could tran-
sit from one to the other smoothly. For example, generally
speaking, it would be more smooth to transit from news
“Toyota dismisses account of runaway Prius” to “What to
do if your car suddenly accelerates” than to “Toyota to build
Prius at 3rd Japan plant”, although both candidate articles
satisfy all the three properties above (i.e., relevance, nov-
elty, and connection clarity). We thus propose the fourth
signal transition smoothness which measures the likelihood
that the two stories can be combined into a single article in
a natural way. The intuition is that, if human editors would
like to put two stories together under some context, it may
mean that the two stories are in a smooth transition, at least
from editors’ perspective.

We propose four heuristics for characterizing relatedness,
namely, relevance, novelty, connection clarity, and transi-
tion smoothness. Taking these heuristics as a road map, we
design and compare a number of different relatedness mea-
sures. We develop a unified relatedness function to leverage
the complementary relative strengths of various heuristics,
by employing a state-of-the-art learning to rank framework,
GBRank [40], that combines various relatedness features and
learns a unified relatedness function. In doing this, we hope
to exploit the strength of machine-learnt rankers, that have
demonstrated significant gains over many manually tuned
rankers for information retrieval and web search [20].

In order to learn a unified relatedness function and quan-
titatively evaluate our proposed models, we also develop a

larger data set which includes not only a news database, but
also judgments of related news for a set of “seed” articles,
for the purpose of training and testing. We collect a subset
of news articles used by a commercial online news website,
design an outline for relatedness judgments, and invite a
group of professional news editors to assess the relatedness
of the recommended articles. Our analysis shows the good
quality of our created data set. The proposed methods are
evaluated on this new test collection.

Experimental results show that the four heuristics can
characterize relatedness, and that the learned unified relat-
edness function works quite effectively.

2. PROBLEM FORMULATION
Given the current news that a user is reading, our goal

is, informally speaking, to extract from a corpus a list of
related articles that the user would like to read afterwards.
We next formally define the problem of post-click news rec-
ommendation. We begin with a series of useful definitions.

Definition 1 (Seed News) A news article s from the
news corpus C that is clicked and being read by a user. It
is also called seed for conciseness.

We only consider textual news in our context, and usually
a news article is comprised of a title, an abstract, and a body.
For example, the title of a seed may be “Toyota dismisses
account of runaway Prius”.

Definition 2 (Candidate News) A candidate news ar-
ticle (or candidate for short) d, is one of news articles from
the news corpus C that are recommended to the user after
he/she has clicked to read seed s.

For the example above, a reasonable candidate may be
the one titled “What to do if your car suddenly accelerates”.

Definition 3 (Relatedness Function) The relatedness
function f is used to estimate the relatedness score of a
candidate d given a seed article s, i.e., f(s, d). It denotes
how well the candidate news is related to the seed news.
Given that d1 and d2 are both candidate news articles, d1 is
a better article to recommend than d2 if f(s, d1) > f(s, d2).

For a recommender system, if the click-rates of different
candidate news are known, one could use them directly as
the relatedness scores. However, such methods rely heavily
on historical data, and thus face a cold-start problem if the
seed news is new; moreover, the method would also be biased
against selecting a newly-published article as related news if
it has not been clicked before. Considering these limitations,
in our work, we choose to initially focus on content-based
news recommendation, in which recommendations are based
on the relatedness of news content. However, click-rate as
well as other user behavior information could be explored to
further improve the relatedness function in future work.

As opposed to relevance feedback in information retrieval
[29, 27, 30], which mostly finds similar documents given a
feedback document, our relatedness function focuses on a
novel notion, “relatedness”, which models not only similar-
ity/relevance but also novelty of the candidate story, connec-
tion clarity between two articles, and transition smoothness
from the seed to the candidate story.

Given a seed article s, the problem of post-click news rec-
ommendation is to (1) identify a set of candidate articles
D = {d1, · · · , dm}, and (2) design a relatedness function to
score each candidate as f(s, di). With D and f , we can then
select a ranked list of n (n < m) candidates with the highest
relatedness scores Ds = {ds,1, · · · , ds,n} for s.



Identifying candidate articles is relatively straightforward.
Although similarity/relevance alone is not sufficient to cap-
ture relatedness, but it could be a necessary condition, in
that, two related documents should at least share some sim-
ilar content, more or less, to each other. On the other hand,
duplicate or near duplicate documents are typically not good
candidate documents, so we need to also do a simple redun-
dancy removal to filter them out. We follow the two stage
approach proposed in [39] to first use a standard information
retrieval model to retrieve a set of documents by taking the
seed article as a query, and then remove relatively obvious
redundant articles.

However, many challenges need to be addressed in order to
design an effective relatedness function. As discussed in Sec-
tion 1, a related article should satisfy several properties (1)
relevance and novelty, (2) connection clarity, and (3) transi-
tion smoothness. Relevance and novelty measures have been
well studied [28, 33, 24, 39, 3], but it is not clear how well
they would work in a unified relatedness function. It is rela-
tively easy to find “connection” between two articles, but it
is non-trivial to model the connection clarity without prior
knowledge. Furthermore, scoring the transition smoothness
from one story to another is also difficult without deep un-
derstanding of natural languages; news transition patterns
could be useful and may be mined from a set of news tran-
sition records collected from a post-click news recommender
system, which, however, turns out to be a chicken-and-egg
dilemma at the current stage. Finally, even if good measures
are designed for all of the above properties, it is still unclear
how to develop a unified relatedness function to leverage all
these measures effectively; learning to rank [20] may be a
possible way, but it needs a large test collection for training
and testing of learning to rank algorithms.

3. MODELING RELATEDNESS
Relatedness represents how well a candidate is related to

a seed. In order to model relatedness, we propose several
signals that characterize relatedness from multiple aspects.

3.1 Relevance and Novelty
Intuitively, a related document should at least share some

similar content with the seed document. For example, the
two news articles in example 6 of Table 1 are too dissimilar
to each other, and clearly they are not related. The no-
tion of relevance in information retrieval, which measures to
what extent the topic of a candidate document matches the
topic of the query, should be a natural aspect of relatedness.
A variety of retrieval models have been well studied in in-
formation retrieval to model relevance, such as vector space
model, classic probabilistic model, and language models [31,
28, 34, 24, 33, 38]. We will revisit and evaluate some rep-
resentative retrieval models to examine how well they work
for finding related articles given a seed article.

On the other hand, if two news articles are too similar to
each other, it is clear that users may not be interested in
one given that they already read the other, since there may
be no novel information in the other article. For example,
we do not want to recommend one of the two very similar
articles in example 4 of Table 1 as a related news article to
the other. Thus, we regard too similar documents as not
related in our definition of relatedness and consider novelty
as another important signal that is necessary for related-
ness. Novelty is often in contrast to relevance, especially

Figure 1: Venn diagram of content overlap between
two documents

in our context where the focus is the relationship between
two documents. In fact, many retrieval functions, e.g., co-
sine similarity, are also effective measures for novelty and
redundancy detection [39, 3]. Therefore, we do not distin-
guish relevance and novelty and use the same set of features
for capturing both of them, leaving the machine learning
algorithm to balance their “dual-roles”.

We evaluate four standard retrieval functions: cosine sim-
ilarity [31], BM25 [28], language models with Dirichlet prior
smoothing [24, 38], and language models with Jelinek-Mercer
smoothing [24, 38]. They cover the most popular informa-
tion retrieval models. Among all, BM25 and language mod-
els with Dirichlet prior smoothing represent two state-of-the-
art models in information retrieval [11]. Cosine similarity,
one of the earliest retrieval functions, does not work as well
as the other three ones. However, we select it instead of
other more advanced variations of the vector space model,
e.g. [34], mainly because it has also been shown to be one of
the most effective measures for novelty detection [39]. We
choose language models with Jelinek-Mercer smoothing, as
it has worked very well for verbose queries [38]; in our task,
the seed document (query) is also usually long and verbose.

All the above standard retrieval functions capture both
relevance and novelty in a single “relevance” score. As a re-
sult, if we use such a “relevance” score to rank documents,
without properly balancing their two roles (i.e., relevance
and novelty) well, the top-ranked documents may be domi-
nated by redundant or unrelated articles, which would hurt
the precision at top documents.

Passage retrieval [7, 16, 21] can relax this problem to some
degree. For a related document, it would be encouraged that
only a portion shares similar content with the seed article,
while other parts are mostly about some novel topics. We
thus investigate passage retrieval, which computes the rele-
vance score for a document mainly based on the best match-
ing passage. Intuitively a score based on passage retrieval
would not be influenced so much as traditional document-
based retrieval by the existence of novel information. There-
fore, we hypothesize that passage retrieval would work bet-
ter than standard retrieval models in terms of precision at
top-ranked documents.

3.2 Connection Clarity
Both relevance and novelty signals can only model the

word overlap between two articles s and d; they essentially
measure the size of overlap, i.e. |s∩d|, as shown in Figure 1.
However, it is often observed that pure word overlap between
two news articles does not necessarily indicate relatedness.
We illustrate this with the following example:

s: White House: Obamas earn $5.5 million in 2009

d: Obama’s oil spill bill seeks $118 million, oil company



The two articles s and d share the same words like “Obama,
million, dollar, ...”, and there is also novel information con-
tained in the candidate d, but they turn out to be unrelated.

Intuitively, in order to make two documents related, they
should share a clear story/thread to make them topically
cohesive. This can often be achieved by repeating the same
topic or similar topic, which forms topical links that connect
two documents together and make them related. However,
word overlap may not necessarily form a clear topic overlap.
For the above example, a set of words like “Obama, mil-
lion, dollar, ...” are not discriminative enough to represent a
specific topic. We thus propose another signal, connection
clarity, to capture this heuristic. Arguably the clearer the
topical connection is, the more related the two documents
would probably be.

One straightforward way for modeling connection clarity
is to consider the topic distributions of two articles. Specif-
ically, we can first identify topics associated with each doc-
ument using probabilistic topic models, such as PLSA [14]
and LDA [5], and then calculate the negative KL-divergence
between two distributions as the connection clarity score:

clarity(s, d) = −
N∑

t=1

P (t|s) log P (t|s)
Pλ(t|d)

(1)

where t denotes a topic and N is the number of total topics
(in our work, we use LDA [5] and set N = 1000 empirically).
Pλ(t|d) = (1−λ)P (t|d) +λP (t|C) is a linearly smoothed topic
distribution associated with document d, where the topic
distribution of the whole collection P (t|C) is selected as the
background model. Although there is no zero-probability
problem, we use a smoothing strategy to decrease the ef-
fects of non-discriminative topics (i.e., topics associated with
many documents) [38]. Intuitively, if both articles share the
same clear/discriminative topic, the score will be high. How-
ever, this method suffers from a drawback: it essentially es-
timates the connection size rather than connection clarity;
as a result, two documents sharing many uncorrelated or
loosely correlated topics, though no topic has a large proba-
bility, may also receive high scores, which is, however, coun-
terintuitive.

Thus we seek a more reasonable method that can measure
the connection clarity directly based on the language usage
of the “connection” (i.e., s ∩ d in Figure 1). We propose to
use the entropy of the language model (unigram distribution
over words) behind s∩d to measure the uncertainty of topics
shared by two documents. Intuitively, if s ∩ d is about a
clear and discriminative story, the language model is usually
characterized by large probabilities for a small number of
topical terms, while if s∩d does not imply a clear connection
(e.g., only consisting of uncorrelated words), the language
model would be smoother. So, the entropy will be smaller
in the former case than the latter.

We first define s ∩ d, the overlap of s and d, in a more
formal way. Since s ∩ d is represented as a bag of words
here, we can use counts of words to define it. Let c(w, di)
be the count of word w in document di. Then c(w, s ∩ d) is

c(w, s ∩ d) = min{c(w, s), c(w,d)} (2)

It is often not very accurate to estimate a language model
P (w|s ∩ d) based on the text of s ∩ d alone, since s∩ d may
only contain a small set of words. We thus borrow the idea
of the relevance model proposed by Lavrenko and Croft [18]

to estimate P (w|s∩ d) using more evidences. The relevance
model has been shown to perform very well for estimating
an accurate query language model in information retrieval
[22]. The relevance model P (w|s ∩ d) is estimated in terms
of the joint probability of observing any term w together
with terms from s ∩ d. With an assumption that w and all
words from s∩ d are sampled independently and identically
to each other, the relevance model is computed as follows:

P (w|s∩d) ∝ P (w, s∩d) ∝
∑

r∈R

P (w|r)
∏

w′∈V

P (w′|r)c(w′ ,s∩d)
(3)

where r is a document or the model estimated from the cor-
responding single document, R is the set of documents that
are associated with s ∩ d, V is the vocabulary of the whole
news collection, and

∏
w′∈V P (w′|r)c(w,s∩d) is the likelihood

of an individual document language model generating s∩ d.
Note that the idea of the relevance model is to use the

likelihood of generating s ∩ d of an individual document as
the weight, and estimate a final language model based on
weighted aggregation of term counts in the document set R.
To improve both efficiency and effectiveness, we restrict R
to only contain top 50 documents that are most likely to
generate s ∩ d.

We next compute the entropy of P (w|s∩d). Since the en-
tropy of P (w|s∩d) is often affected significantly by common
terms (e.g., ‘the’, ‘and’, ...), we compute a relative entropy or
KL-divergence, similarly to [9]. The relative entropy as the
connection clarity score, essentially measures the language
usage associated with s ∩ d as compared to the background
language model of the collection as a whole.

clarity(s, d) =
∑

w∈V

P (w|s ∩ d) log
P (w|s ∩ d)

P (w|C)
(4)

Based on this formula, a larger score of connection clarity
indicates higher relatedness between two documents.

3.3 Transition Smoothness
Even if a candidate article satisfies all the above proper-

ties, would a user like to transit to this article after reading
the current news? Let’s take a look at some examples:

s : Toyota dismisses account of runaway Prius

d1: What to do if your car suddenly accelerates

d2: Toyota to build Prius at 3rd Japan plant: report

Given a seed (s), we believe that users would be more
likely to read candidate 1 (d1) than candidate 2 (d2). One
possible reason is that d1 and s are more coherent, and we
can even imagine that it would be natural to combine s and
d1 into one coherent article. Although, d2 also connects well
to s via “Toyota Prius”, it would be odd if these two stories
are combined, because there is little continuity of senses
between stories; as a result, a user’s reading interests would
less likely to transit from s to d2 smoothly.

Thus we propose another signal, transition smoothness,
to model relatedness from another dimension. Transition
smoothness measures how well a user’s reading interests can
transit from s to d. As shown in Figure 1, since s∩d is shared
by two documents, intuitively we are more interested in the
transition smoothness from s − d to d − s, i.e., from the
“known” information to the “novel” information. We define
s− d and d− s as follows:

c(w, s− d) = c(w, s)− c(w, s ∩ d) (5)

c(w, d− s) = c(w, d)− c(w, s ∩ d) (6)



It is nontrivial to model transition smoothness directly,
which needs deep understanding of natural languages. In-
stead, we attempt to estimate it in an alternative way. Imag-
ine that if, in some context, an editor would like to put two
“stories” (not necessarily natural language stories, since they
are just bags of words) s− d to d− s into one news article,
it probably means that the two stories have a smooth tran-
sition, at least from that editor’s perspective. Therefore,
through analyzing a large collection of news articles, if two
stories often occur in similar contexts, it may suggest that
they are smooth in transition. And now the problem is how
we can model and compare “contexts” for s− d to d− s.

Our first approach is to model context using associated
documents. Such a document-based context is represented
as a vector of documents. Specifically, the context of s− d,
i.e., �Cs−d, is a |D|-dimension vector, where |D| is the total
count of articles. The weight of each dimension di is defined
as g(s− d, di). g can be any positive function. In our work,
we use the relevance score of document di with respect to
“query” s− d as g(s− d, di). In particular, we use the well-
known BM25 retrieval function [28] to compute relevance
scores. This implies that if a document is more relevant to
s − d, the document would play a more important role to
determine the context of s − d. Similarly we can estimate
the context vector �Cd−s for d − s. Finally, the transition
smoothness score can be computed using the cosine similar-
ity between context vectors:

smoothness(s, d) =
�Cs−d · �Cd−s

|| �Cs−d|| · || �Cd−s||
(7)

An alternative approach is to model a word-based con-
text. The word-based context is represented as a unigram
language model. Specifically, the context of s− d and d− s,
i.e., P (w|s − d) and P (w|d − s), can also be estimated us-
ing the relevance model [18] in a similar way as we estimate
P (w|s∩d) in Section 3.2. Then we can compare two contexts
in terms of their divergence. Due to the zero-probability
problem, we use the Jensen-Shannon divergence [19]:

smoothness(s, d) =
1

2

∑

w∈V

P (w|s− d) log
P (w|s− d)

P (w|M)

+
1

2

∑

w∈V

P (w|d− s) log
P (w|d− s)

P (w|M)

(8)

where P (w|M) = 0.5 · P (w|s− d) + 0.5 · P (w|d− s).
We can see that both methods boil down to computing

the similarity/distance between the contexts of two docu-
ments. The main difference is that the first method uses
a document-based context representation, while the second
uses a word-based representation.

4. CONSTRUCTING A UNIFIED RELATED-
NESS FUNCTION

In order to learn a unified relatedness function and quan-
titatively evaluate our proposed models, we need a data set
which includes not only a news database and a large set
of seed news articles, but also judgments of related news
for each seed article for the purpose of training and testing.
There is an existing small collection [6], which, however,
only contains 50 seed articles with no quality analysis of
their judgments. We thus decide to establish a larger test
collection and collect editorial judgments which reflects a

more realistic scenario. Furthermore, through constructing
a test collection, we also seek if our definition of relatedness
can be effectively identified by human assessors and to what
degree different assessors agree with each other in making
judgments.

Next, we describe how we constructed our editorial data
set and learn our relatedness function in detail.

4.1 Constructing a Test Collection
We collected a subset of Yahoo! News articles from March

1st to June 30th 2010. Then we randomly generated a list
of 549 seed news from June 10th to June 20th, 2010 with at
least 2, 000 visits. We chose the seed articles from mid-June
period since a news article often has a very short active life
and thus the recommended news in reality could be mostly
comprised of older news (i.e., news occurring before mid-
June) and sometimes a few newer ones in the near future
(i.e., late-June). The restriction of avoiding less popular
news as seed articles was to reduce the cases that some as-
sessors might be unfamiliar with the news stories so as to
feel uncertain to make judgments; in real applications, we
may also expect our models to be most useful for such rela-
tively popular news. So our data collection strategy reflects
the real world applications well.

To generate relatedness judgments for each seed article
efficiently, we used the pooling technique [15] and asked as-
sessors to judge only a pool of top-ranked documents re-
turned by various runs (i.e., recommender systems). We
used several standard information retrieval models as the
“runs”, including cosine similarity with a raw TF and a log
IDF [31], Okapi BM25 (k1 = 1.2, k3 = 1000, b = 0.5) [28],
language models with Dirichlet prior smoothing (μ = 2, 000)
[24, 38], and language models with Jelinek-Mercer smooth-
ing (λ = 0.9) [24, 38], to retrieve documents from the collec-
tion. The retrieval parameters were shown to work well on
TREC7 ad hoc test collection (http://trec.nist.gov/), also
a news corpus, for which we used the verbose “narrative”
portion of TREC7 topics as queries. We mainly used the
body portion of both candidate and seed articles for index-
ing, leading to 4 runs. In order to improve diversity, for the
language modeling approach with Dirichlet prior smoothing
method, we also added two other runs where the title and
abstract (provided by Yahoo! News) portions of seed articles
were indexed as“queries” respectively. Finally, we generated
6 runs in total.

Next, we did a simple redundancy detection using the two-
stage approach proposed in [39] to filter out relatively ob-
vious redundancy. Specifically, we used cosine similarity,
which had been shown to work effectively in [39], to re-
move near duplicate documents of which the similarity score
passes a pre-specified redundancy threshold. In our work,
we set the redundancy threshold to 0.8 empirically.

One difference of our task from traditional information
retrieval tasks is that we are only interested in the top-
ranked documents. Therefore, for each seed article, the top-
ranked 15 documents (after redundancy filtering) from each
run were pooled together to be judged, resulting in a set of
16, 484 news documents in total to be judged for 549 seed
news. Moreover, to investigate the consistency of assessor
judgments, we randomly selected 2 documents for each seed,
which would be judged by two different assessors, while all
other documents would be judged by only one assessor.



Very related Somewhat related Unrelated Redundant
3695 (21.0%) 4277 (24.3%) 9278 (52.8%) 322 (1.8%)

Table 2: The distribution of relatedness judgments.

4.1.1 Guidelines for Editorial Judgments
We invited a group of professional news editors from a

commercial online news website to participate in the judg-
ing tasks. Though they are all experts of news articles, we
still trained them carefully to understand the tasks of post-
click news recommendation. After that, they were asked
to judge the relationship of a candidate article to its corre-
sponding seed news as one of the 4 degrees: very related,
somewhat related, unrelated, and redundant. The meaning
and description of each degree are introduced below, and
some examples are also shown in Table 1.

Very Related: The two documents should share some in-
teresting topic/event threads. The candidate should contain
somehow complementary information to the seed be it nar-
rower or broader in scope. Imagine that the user thinks up
some questions while reading the seed article, and the rec-
ommended article provides a good answer to (at least) one
of them. Very related content is serendipity at its best.

Somewhat Related: The candidate contains is at least
related to the topic of the seed, but not very interesting. After
reading the seed article, the user would not be particularly
well-informed or eager to read the candidate article. On the
other hand, if we choose to provide the candidate, the user
would understand why we displayed it, rather than thinking
”how on earth is that related?”

Unrelated: There is no clear connection between the can-
didate and the seed. The candidate looks like a spam.

Redundant:1 The candidate discusses the same thing as
the seed without providing any clearly novel information.

4.1.2 Analysis of Editorial Judgments
We received 17, 572 valid judgments in total, and a few

documents which made editors hard to judge were removed
from the set. The number and proportion of judgments from
each relatedness level are reported in Table 2. We can see
that “unrelated” documents take the most portion, followed
by “somewhat related” and “very related” documents. After
a simple redundancy removal step, redundancy seems not to
be a serious concern in our task, since it only takes 1.8%.

We also had 1098 documents, each of which was judged
by 2 different editors. We show some consistency analysis
in Figure 2. It is observed that different editors are more
consistent in identifying unrelated and very related docu-
ments, while they often do not agree with each other too
much on redundant and somewhat related documents, es-
pecially on redundant documents. Except the “redundant”
level, the multi-level judgments indeed provide more infor-
mation than binary judgments. For example, we are more
confident to take a document as related document if an edi-
tor labels it as “very related” than that the editor labels it as
“somewhat related”. Overall, the agreement between editors
is 62.5% for our four-level relatedness judgments. However,
if we only consider binary judgments by simply taking very
related, somewhat related, and redundant judgments all as
“related”, then the agreement is increased to 79.9%, which

1Although we have attempted to filter out “duplicate”/“near
duplicate” documents, there still could be documents that
are redundant in content but very different in presentation.

Figure 2: The distribution of relatedness judgments
given by one editor, when another one’s judgment
is “unrelated” (top left), “somewhat related” (top
right), “very related”(bottom left), and“redundant”
(bottom right), respectively.

is as high as the agreement of binary relevance judgments
by TREC assessors [13]. It suggests that our editorial judg-
ments are of a good quality.

We argue that the inconsistency of some judgments may
be mainly due to the different “criteria” of editors to make
multi-level judgments. To investigate it, we further look
into the agreement of relative relatedness of two documents.
Specifically, we first ignore seed articles of which either of the
two candidate documents is judged as “redundant” by any
editor, so as to make the relative ranking easier to generate.
After that, we have 494 out of 549 seed articles left. We
then assume that two documents can be ranked randomly
if they are judged to be equally related (i.e. tie), otherwise
“very related”� “somewhat related”� “unrelated”. Finally
we find that the agreement ratio is 80.8%, much higher than
that of absolute judgments. The high agreement in relative
relatedness inspires us to learn relatedness functions from
the pair-wise preference information implied in judgments.

We use a 4 point relatedness scale, where “very related”,
“somewhat related”,“redundant”, and“unrelated”judgments
receive ratings 3, 2, 1, and 0, respectively. Such a rat-
ing strategy for relatedness assessments is chosen based on
both our intuition and the probability ranking principle [26]:
“very related” articles should be ranked the highest, “unre-
lated” should be ranked the lowest, a “redundant”document
is still better than an “unrelated” one that may hurt user
experience, and a “redundant” document should be worse
than a “somewhat related” document that contains novel in-
formation. For any document with two different judgments,
we select a judgment with the higher agreement ratio ac-
cording to Figire 2 as its final judgment. For example, if
a document is judgment as “very related” and “somewhat
related” by two editors respectively, we then select “very re-
lated” as its final judgment. Yet this rating scale may not be
optimal, but it has been shown to work very well empirically.

4.2 Learning a Relatedness Function
Given the features described in Section 3 and editorial

data obtained as in Section 4.1, we use a state-of-the-art



Relatedness Seed news Candidate news

Very related
Polish leader, 96 others dead in Russia jet crash List of some of those who died in the crash of the Polish

1
presidential plane in Russia

Toyota dismisses account of runaway Prius What to do if your car suddenly accelerates 2
Somewhat related Toyota dismisses account of runaway Prius Toyota to build Prius at 3rd Japan plant: report 3
Redundant Obama, McCain pledge to work together for reform Obama, McCain vow to work together, reform government 4

Unrelated
White House: Obamas earn $5.5 million in 2009 Obama’s oil spill bill seeks $118 million, oil company

5
tax increase

Polish leader, 96 others dead in Russia jet crash Tax rows roll on in election campaign 6

Table 1: Examples for relatedness judgments, where the title of each news article is shown.

learning to rank algorithm, namely GBRank [40], to leverage
features and develop a unified relatedness function.

More specifically, denote xi ∈ R
d as the feature vector

for the i-th document pair (i.e., a seed and a candidate), ri
as the editorial label of relatedness, and f : Rd → R as a
relatedness function. Then, for total n editorial data, we
define a loss function L({xi}, {ri}, f) as

L({xi}, {ri}, f) =
∑

(i,j)∈Pn

(
(ri − rj) − (f(xi) − f(xj))

)2

+

+ λ
∑

(i,j)∈Tn

(f(xi) − f(xj))
2

(9)

where (x)+ is x if x ≥ 0 and 0 otherwise, Pn is the set
of preference pairs, and Tn is the set of tied pairs. We
then use the stochastic functional gradient boosting tech-
nique [12] to minimize Equation 9 in the functional space
using regression trees as weak learners and obtain the relat-
edness function. The used parameters for functional gradi-
ent boosting trees are number of nodes N = 10, 15 for tree
weak learners, number of trees T = 600, shrinkage parame-
ter ν = 0.03, 0.05, 0.07, data sampling rate s = 0.5, 0.7, 0.8,
and tied pairs weight λ = 0.5, 1, 3.

The reason why we chose the preference based, pair-wise
algorithm is from the analysis in Section 4.1.2 that our edi-
torial labels tend to be consistent more in the relative sense.

5. EXPERIMENTS
We preprocess both candidate and seed documents by ap-

plying the Porter stemmer and removing stopwords using
a total of 418 InQuery stopwords. The average length of
news bodies is not very long, only 97 words after prepro-
cessing. We use different methods to rank those candidate
documents that have been judged by editors. We choose the
widely-used NDCG as our main measure and report NDCG
scores at top 1, 3, 5, and 10 documents, since we are espe-
cially interested in the performance at top documents.

5.1 Comparing Individual Retrieval Models
To compare different retrieval models, we use the body

text to index candidate documents (i.e., body indexing),
which has been shown to work well [6]. For seeds (queries),
we test title, abstract, and body indexing respectively.

We first report the comparison of different retrieval models
in Table 3, where the parameters of different models are
tuned to work well on the collection. We can see that, among
different methods to index seed documents (queries), body
indexing tends to be better than abstract indexing which
is better than title indexing. This observation is consistent
to the findings of [6] using a small data set with binary
judgments. It suggests that the title and abstract may lose
useful information since they are “compressed”.

Comparing different retrieval models, BM25 is clearly the
best when using title or abstract indexing for seed docu-
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Figure 3: Comparison of document (doc) and pas-
sage (psg) retrieval. In a label “X.Y”, ‘X’ stands for
indexing methods for seed documents.

ments, but when using body indexing, the two language
modeling approaches work as well as BM25. Besides, co-
sine similarity performs surprisingly as well as or even better
than language models in some cases, but its NDCG1 score
appears relatively poor. This may be due to the effective-
ness of cosine similarity for redundancy detection [39], which
often brings redundant documents to the top position.

We next evaluate passage retrieval to see if it is more
appropriate in our task. We use a strategy of fixed-length
arbitrary passage retrieval (passages that can start at any
position in a document but with the fixed length) [16], which
has been shown to work effectively [16, 21]. We fix the pas-
sage length to 250 empirically. Following [21], we also use the
language modeling approach with Jelinek-Mercer smoothing
method for passage retrieval. Experiment results are sum-
marized in Figure 3. It shows that document-based retrieval
is better in many cases, probably because our news docu-
ments are mostly homogeneous and short so that passage
retrieval does not help [21]. However, it is interesting to
see that passage retrieval improves NDCG1 clearly. It may
indicate that passage retrieval somehow relaxes the concern
of ranking redundant documents on top. Probably because
we only have 1.8% redundant documents after a simple re-
dundancy removal step, the benefit of passage retrieval does
not improve NDCG3, 5, and 10.

5.2 Comparing Machine-Learned Relatedness
Models

In the following experiments, we evaluate relatedness mod-
els which are learned using GBRank [40] to leverage a set
of features. We use a 5-fold cross validation strategy, where
the total 549 seed documents (queries) are split into 5 collec-
tions randomly. And the performance scores reported below
are based on the combination of 5 testing collections.

We first combine standard retrieval models (as listed in
Table 3) using GBRank, and the model obtained is labeled



Metric
Title Abstract Body

lm-dir lm-jm cosine BM25 lm-dir lm-jm cosine BM25 lm-dir lm-jm cosine BM25
NDCG1 0.5859 0.5712 0.5660 0.6093 0.6253 0.6192 0.6076 0.6340 0.7057 0.6930 0.6841 0.7027
NDCG3 0.5783 0.5812 0.5836 0.6050 0.6171 0.6234 0.6104 0.6334 0.7033 0.7079 0.6887 0.7042
NDCG5 0.5911 0.5900 0.5958 0.6162 0.6319 0.6314 0.6269 0.6440 0.7098 0.7152 0.6983 0.7133
NDCG10 0.6285 0.6305 0.6369 0.6536 0.6615 0.6630 0.6624 0.6753 0.7421 0.7443 0.7330 0.7448

Table 3: NDCG comparison of standard information retrieval models with different portions of seed doc-
uments as “queries”. “lm-dir” and “lm-jm” stand for language models with Dirichlet prior smoothing and
Jelinek-Mercer smoothing respectively.

Figure 4: Performance comparison of machine-
learned recommenders using different feature sets.

as “RN”. The comparison of RN with BM25 is shown in
Figure 4. We see that RN improves consistently and signif-
icantly over BM25, and the improvement is especially large
for NDCG1. Since NDCG1 is most sensitive to the existence
of redundant documents, it may suggest that the learned
model RN can balance relevance and novelty well.

We then train another model by adding passage retrieval
features in. This model is labeled as “RN+Psg”. We can
see from Figure 4 that, although RN+Psg does not intro-
duce clear improvements to RN on NDCG5 and NDCG10,
it indeed boosts NDCG1 significantly. This observation con-
firms our previous finding that passage retrieval handles re-
dundant documents well.

Next, we introduce another heuristic, connection clarity.
We investigate the proposed two instantiations of this heuris-
tic, i.e., Formula 1 and 4, respectively. Our experiments
show that the first instantiation (Formula 1) does not help
and even often hurts NDCG1 and NDCG3, probably due to
its drawback as we have discussed in Section 3.2. We then
drop the first instantiation and add the second one, which
is labeled as “RN+Psg+CC”. We find that the second ap-
proach is indeed better than the first one. From Figure 4, we
can see that RN+Psg+CC improves NDCG10 and NDCG5
over RN+Psg, though NDCG1 is decreased slightly. It may
suggest that connection clarity somehow tends to favor re-
dundant documents, since the “connection” between dupli-
cate stories is just this story, which would often be “clear”.

We now turn to evaluate the last heuristic, transition
smoothness. There are also two instantiations, document-
based context comparison and word-based context compar-
ison. We add them into the feature set together, since they
essentially boil down to computing transition smoothness in
a similar way. The new model is named “RN+Psg+TS”.
We can see from Figure 4 that RN+Psg+TS outperforms
RN+Psg clearly in most cases. Yet similar to RN+Psg+CC,
this model also fails to improve NDCG1.

Comparing the two novel heuristics, transition smooth-
ness seems to work better than connection clarity. Anyway,

Metric BM25 RN All
NDCG1 0.7027 0.7380+ 0.7507+∗
NDCG3 0.7042 0.7262+ 0.7426+∗
NDCG5 0.7133 0.7282+ 0.7422+∗
NDCG10 0.7448 0.7593+ 0.7698+∗

Table 4: Performance comparison of different re-
latedness functions. ‘+’ and ‘*’ mean the improve-
ments of model All over both BM25 and RN are
statistically significant respectively.

Feature name Imp. method s d
1 cosine.body 100 cosine body body
2 lm-jm.body 70.75 lm-jm body body
3 BM25.body 45.10 BM25 body body
4 smooth-1.body 36.59 Formula 7 body
5 psg-abs 35.78 passage abstract body
6 BM25.title 31.54 BM25 title body
7 clarity.title 29.32 Formula 4 title
8 smooth-2.abs 25.59 Formula 8 abstract
9 BM25.abs 22.49 BM25 abstract body
10 smooth-2.title 21.53 Formula 8 title
11 lm-dir.body 21.07 lm-dir body body
12 clarity.body 20.43 Formula 4 body
13 psg.title 19.15 passage title body
14 clarity.abs 19.07 Formula 4 abstract
15 smooth-2.body 18.04 Formula 8 body

Table 5: Top-15 important features. “Imp.” means
the importance score, and the last two columns indi-
cate the indexing methods for seeds and candidates.

there is much room to improve both of them through further
optimizing their feature implementations.

Finally, we combine all heuristics and construct a unified
relatedness function, labeled as “All”. The performance is
shown in both Figure 4 and Table 4. Clearly, this unified
model performs the best among all methods. We can see
that the improvement of “All” over “RN” is close to the im-
provement of “RN” over the most effective single method
BM25. And the improvements are also statistically signifi-
cant using the Wilcoxon test (p < 0.05). It indicates that
our heuristics indeed capture more evidences of“relatedness”
by going beyond relevance and novelty.

5.3 Analyzing the Unified Relatedness Model
We go a step further to analyze the importance of differ-

ent heuristics and features in contributing to the model. Our
unified relatedness model is learned using GBRank, which
is an extension of the gradient boosting decision tree [12].
We thus follow the relative importance measure proposed in
[12] to examine the proposed features. The top-15 influen-
tial features and their corresponding importance scores are
reported in Table 5.

It shows that all the proposed heuristics contribute clearly
to the model. Among all, relevance and novelty together
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tend to be most important. It is interesting to see that,
though cosine similarity is significantly worse than BM25 as
an individual relatedness function, the former turns out to
be the most important feature in the unified model. One
possible explanation is that cosine similarity is also very ef-
fective in redundancy and novelty detection [39]. Language
models with Jelinek-Mercer smoothing method (lm-jm) also
seems to be more important than BM25, which needs more
experiments to further examine the reason. Although not
the most important one, BM25 contributes 3 important fea-
tures, probably due to its excellent performance for modeling
relevance. Besides, passage retrieval also appears important.

Moreover, it is very encouraging to see that the proposed
two novel heuristics, connection clarity and transition smooth-
ness, contribute 7/15 important features together. Regard-
ing connection clarity, it seems that the connection of ti-
tles between two articles is more useful, which looks inter-
esting because intuitively users also tend to judge related
articles mainly based on titles. For transition smoothness,
document-based context comparison (smooth-1, we only im-
plemented one feature based on smooth-1) tends to be bet-
ter than word-based ones (smooth-2), which suggests that
a document may be a more meaningful and appropriate
unit for capturing contexts than words. Overall, transition
smoothness looks more important than connection clarity,
which is consistent with our previous observation of their
empirical performance.

Since we use a supervised learning approach, one routine
question would be: how much training data is needed to
train a reliable model? To examine it, we draw in Figure
5 the NDCG curves for the number of training instances
for one of the 5 folds, where the total number of training in-
stances is 439. It is interesting to see a general upward trend
as we use more training data (zero training data means that
only BM25 is used). And we can often learn a reliable relat-
edness model with more than 200 training instances. How-
ever, there seems to be a plateau after the size of training
data reaches 300. Yet further experiments and larger test
collections are needed to confirm this observation.

As for real application, efficiency is very important. How-
ever, there is no serious efficiency concern with our work.
First, the number of news articles generated per day is not
very large. Secondly, we only need to score and re-rank a
few candidate documents for a seed article. Thirdly, feature
scores can also be pre-computed, and post-click news recom-
mendation can also be done offline. As the news collection
evolves over time, some features of the proposed two novel
heuristics, i.e., connection clarity and transition smoothness,

may be updated periodically. However, it still does not hurt
the efficiency too much; since the life of a news story is usu-
ally very short, we only need to update features for a few
“active” articles.

6. RELATED WORK
Recommendation has been studied extensively in the past.

Content-based filtering and collaborative filtering are the
two main types of recommendation techniques that have
seen most interest [1]. In news domain, recommendation
services often rely on user activities such as click patterns to
find the most popular news [2], user-news ratings for collab-
orative news recommendation [25, 17, 10], or user interests
for content-based and adaptive news access [4]. All these
techniques focus on attracting users’ initial clicks and visits,
but how to engage with users after their initial click has not
been well explored.

Due to the characteristics of news, such as short life and
rich content, content-based recommendation is presumably
a good choice for post-click news recommendation, at least
early in the life-time of a news article when there is lack of
related news preference data. However, traditional content-
based filtering, e.g., [4], is usually to recommend stories
which reflect users’ long-term interests well (e.g., a user
might generally like sports articles), while our work focuses
on recommending news related to users’ ad hoc interests im-
plied by the currently clicked news, although the learned re-
latedness model would also benefit traditional content-based
filtering.

There are existing studies that also attempt to recommend
news articles or blog posts given a seed article [6, 36, 23].
However, their methods mainly use standard IR models [6,
23] or other similarity-based functions [36] to score candi-
date news. Prior work has not studied how to characterize
relatedness. A recent work [32] focused on connecting two
news stories in two different time points through finding a
set of coherent stories in the middle. Their objective func-
tion is maximizing the coherence of the whole story chain,
while we maximize the relatedness of recommended articles
to a seed article. We believe our work of pair-wise relat-
edness would benefit their tasks, in that, any neighboring
nodes in their chain should be related to each other.

The process of post-click news recommendation appears
similar to traditional information retrieval [28, 33, 24]. How-
ever, as opposed to IR, which mostly finds relevant docu-
ments given a query, our relatedness function focuses on a
novel notion, “relatedness”, which models not only similar-
ity/relevance but also novelty of the candidate story, connec-
tion clarity between two articles, and transition smoothness
from the seed to the candidate story.

In comparison with traditional IR tasks, novelty detection
is highly related to our work. Existing studies in novelty
detection, e.g., [8, 39, 37, 3], often aim to locate relevant
and novel information through finding a tradeoff between
relevance and novelty. Most work boils down to balancing
relevance and novelty in an ad-hoc way, such as the two-state
novelty detection approach proposed in [39]. The notion
of “relatedness” studied in our work, however, depends on
multiple signals beyond just relevance and novelty. Thus, it
is difficult to tune their tradeoff and adjust their interactions
using similar methods. We thus define a set of signals and
features which can capture multiple aspects of relatedness



and use a learning approach to leverage all these features to
model relatedness and rank candidate articles.

Recently, learning to rank [40, 20] has attracted much
attention in IR. The advantage of machine learning is that
it provides an optimization framework to leverage various
kinds of signals. Learning to rank has been shown to be
quite effective in IR and Web search [20] to model relevance
of documents. In contrast to arguably all work on learning
to rank, our study investigates the capability of learning
approach to model a novel notion, relatedness.

7. CONCLUSIONS
In this paper, we studied post-click news recommenda-

tion. More specifically, given a user has read a current news
article, our idea is to automatically identify “related” news
articles which the user would like to read afterwards. We fo-
cused on characterizing and modeling the notion relatedness.
A large test collection was created with editorial judgments
of relatedness, multiple heuristics from various dimensions
were proposed to measure relatedness, and a unified relat-
edness function was learned. The analysis shows the good
quality of the constructed collection; experimental results
demonstrate that the proposed heuristics can indeed cap-
ture relatedness from multiple perspectives, and that the
learned unified relatedness function can be able to leverage
relative strengths of various relatedness measures and works
quite effectively for news recommendation.

This research is only a first attempt at post-click news rec-
ommendation, so there are many open problems for future
research. Although our content-based relatedness measures
worked well in our experiments, we believe that the under-
lying relatedness relationship is document and user specific,
and that document and user adaptive measures will eventu-
ally be more accurate. It is also very promising to incorpo-
rate into the unified relatedness function other non-content
features, such as click-rate, user comments, social networks,
news transition patterns, timestamp, and document source,
which will be important sources of evidence for further im-
proving relatedness modeling.
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