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ABSTRACT

While current search engines serve known-item search such as home-
page finding very well, they generally cannot support exploratory
search effectively. In exploratory search, users do not know their
information needs precisely and also often lack the needed knowl-
edge to formulate effective queries, thus querying alone, as sup-
ported by the current search engines, is insufficient, and browsing
into related information would be very useful. Currently, browsing
is mostly done by following hyperlinks embedded on Web pages.
In this paper, we propose to leverage search logs to allow a user to
browse beyond hyperlinks with a multi-resolution topic map con-
structed based on search logs. Specifically, we treat search logs
as “footprints” left by previous users in the information space and
build a multi-resolution topic map to semantically capture and or-
ganize them in multiple granularities. Such a topic map can support
a user to zoom in, zoom out, and navigate horizontally over the in-
formation space, and thus provide flexible and effective browsing
capabilities for end users. To test the effectiveness of the proposed
methods of supporting browsing, we rely on real search logs and
a commercial search engine to implement our proposed methods.
Our experimental results show that the proposed topic map is ef-
fective to support browsing beyond hyperlinks.

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval]: Search process, Clustering

General Terms: Algorithms

Keywords: Beyond hyperlinks, effective browsing, multi-resolution
topic maps, information footprints

1. INTRODUCTION

Users’ search tasks vary a lot from a simple known-item search
to very complex exploratory search [48]. In known-item search,
a user has a well-defined information need and can generally for-
mulate an effective query and thus the current search engines often
work very well. In exploratory search, however, the information
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need is often complex and vague, and the goal of search is mainly
to gather and study information about some topic. Thus a user gen-
erally does not know well about the information to be found in
exploratory search (which is the reason why the user needs to ini-
tiate the search in the first place). As a result, it is often difficult
for a user to formulate effective queries in exploratory search, and
the user has to reformulate queries many times in a trial-and-error
manner. For example, when a user wants to buy a used car, what
he/she needs is not just a single piece of information such as a list
of used car dealers, but also opinions about the dealers by previ-
ous customers, advantages/disadvantages of different brands, and
advice on car insurance, etc. Formulating effective queries to find
all this information is quite challenging, especially for a user who
does not know well about the domain. For these reasons, the cur-
rent search engines generally do not perform well for exploratory
search compared with known-item search [28]. Since exploratory
search happens very often, it is very important to study how to help
users to conduct effective exploratory search [28, 48].

Querying alone is often insufficient to support exploratory search
well due to the difficulty in formulating good queries. When a user
is unable to formulate effective queries, browsing would be intu-
itively very useful because it enables a user to navigate into rel-
evant information (and explore the information space in general)
without formulating a query. Indeed, being able to browse the Web
through hyperlinks is essential to web users, and quite often, a user
would find relevant information by following hyperlinks in the re-
sult pages [12]. Had all the hyperlinks been broken, the utility of a
search engine would be significantly reduced.

Unfortunately, with the current search engines, browsing is mostly
through following static hyperlinks. This is very restrictive and
would not allow a user to go very far in the information space. A
main research question we want to study in this paper is how to
support browsing more effectively for ad hoc exploratory queries
so that users can go beyond hyperlinks to freely navigate into re-
motely related topics in the entire information space.

There have been some efforts on providing more powerful navi-
gation support, but they tend to rely on manually created meta data
and usually can only support “vertical” navigation through hier-
archies. For example, Web directories such as Yahoo!' and ODP?
(Open Directory Project) directories use manually constructed hier-
archies to support drill-down and roll-up. Faceted hierarchies [20,
50] go beyond a single hierarchy to support browsing with mul-
tiple hierarchies. The multiple hierarchies are carefully designed
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and built along different dimensions in a given domain (e.g., time
or location dimensions for news articles) so that a user can flexibly
choose different dimensions to narrow down their search. However,
these hierarchies are mostly created manually and thus need a lot
of human efforts to adapt them in a new domain. More importantly,
they only allow users to move vertically i.e., drill-down or roll-up.
These two operators are not sufficient enough for users to exploit
related information. Horizontal navigation in educational hypertext
is studied in [7] but it is only limited to connect basic documents.
When users’ information needs are complex, combining vertical
and horizontal navigation is especially beneficial.

Thus it remains a significant challenge to effectively support ef-
fective browsing beyond hyperlinks for arbitrary ad-hoc queries.
Ideally we should support both vertical and horizontal navigation.
In this paper, we propose to achieve this goal through a novel nav-
igation structure: multi-resolution topic maps. A topic map is an
analogy of geographical map, but it is to capture the global struc-
ture of an information space. Technically, a topic map is an ex-
tension of hierarchy but it has two distinct features: (1) Topics in
the same level of the map have similar resolution. (2) There are
horizontal links between topics in the same level, besides the verti-
cal links as in a hierarchy. In a multi-resolution topic map, topics
with coarse granularities (i.e., low resolutions) subsume those with
finer granularities (i.e., high resolutions). For example, “car” can
subsume “car rental,” “car pricing” and “car insurance.” Related
topics in the same granularity are connected horizontally. For ex-
ample, “flight” can be connected with “hotel,” “vacation” and “car.”
With a multi-resolution topic map, a user can easily reach topics
of different granularities through vertical navigation (i.e., zoom in
and zoom out) as well as topics with the same level of granular-
ity through horizontal navigation (i.e., moving to a neighbor area),
achieving flexible navigation. Just as a geographical map can help
a tourist tour a city, a topic map can guide a user in an information
space.

To construct a multi-resolution topic map, we rely on past search
engine logs, which can be regarded as “footprints™ left by previous
users in the information space. Just as the footprints of previous
visitors in a park can help guide future visitors, the footprints in an
information space left by previous users can also help future infor-
mation seekers. Our multi-resolution topic map is to capture these
footprints in a semantical way so that it can guide a user to reach
relevant information by following the “wisdom of crowds.” Com-
pared with past work on exploiting search logs (which is discussed
in length in Section 2), turning the entire search logs into a topic
map is a novel way to leverage search logs to help search. More-
over, as new users use the topic map to navigate the information
space, they will add footprints to the information space, which can
then be used to improve and refine the map dynamically for the
benefit of future users, thus enabling users to surf the information
space in a collaborative manner. The topic map essentially serves
as a sustainable and continuously growing infrastructure for social
surfing.

We extend an existing clustering method to build a topic map
in three steps: (1) finding topic regions in different granularities
with dense footprints, (2) building horizontal links to connect top-
ics with the same granularity, and (3) labelling topic regions with
meaningful keywords. Our method of constructing the map is com-
pletely unsupervised and can be easily applied to any search logs.
The constructed topic map can be used to support flexible brows-
ing in a topic space, which can be integrated with regular querying
in a search system to enable users to flexibly query, browse a map
node, and navigate over the topic map to find relevant information.
We evaluate the potential benefit of our topic map using a sample

of search logs from a commercial search engine. The experimen-
tal results show that the idea of supporting flexible browsing with
a multi-resolution topic map is promising and that our search log-
based topic map is effective in helping a user reach useful pages
quickly through pure browsing.

The main contributions of this paper are:

e We propose a novel structure (i.e., multi-resolution topic map)
to enable a user to go beyond hyperlink-following to flexibly
navigate in the information space.

e We propose a novel way to exploit search logs for improving
search by treating search logs as information footprints and
organizing all the search logs into a topic map, which can po-
tentially provide sustainable social surfing in the information
space.

e We propose a general method for turning any search logs
into a multi-resolution topic map based on the star-clustering
algorithm.

e We evaluate the effectiveness of the novel topic map in sup-
porting browsing and show promising results.

The rest of the paper is organized as follows. We first review
related work in Section 2. We then define a multi-resolution topic
map formally in Section 3 and describe our algorithms of building
a topic map in Section 4. After that, we will discuss how to use a
topic map to support flexible browsing in Section 5, and present our
experiment results in Section 6. We discuss how we can leverage
a topic map to unify querying and browsing in a single navigation
framework in Section 7 and conclude our paper in Section 8.

2. RELATED WORK

Exploratory Search. Exploratory search has attracted much
attention recently [28, 25, 16, 48]. Different from the previous
works in the HCI community which mostly focus on interface de-
sign [20, 10, 18], our emphasis is on turning search logs into a topic
map to enable users to navigate flexibly in the whole information
space. Querying and browsing are two common information search
paradigms [14, 26, 27, 51, 17]. A recent study [41] has shown that
orienteering behaviors are common in search and can not be well
supported by direct querying. Thus supporting browsing is indeed
important, especially for exploratory search needs. Most existing
work has relied on catalog, meta-data, or other domain-specific
knowledge to support browsing [3, 29, 5]. Our work focuses on
the general Web domain and leverages naturally-growing unstruc-
tured search logs to support browsing for ad-hoc topics.

Hierarchy and Faceted Hierarchies. Traditional hierarchies
are Web directories such as Yahoo! and ODP directories. Both
are built manually and only focus on vertical relations. As a result,
current hierarchies do not have a clear notion of resolution and thus
topics in the same level of a hierarchy are not always comparable
with respect to granularities. Our multi-resolution topic map is an
extension of traditional hierarchy with distinct features: topics in
the same level have similar granularities and horizontal links are
constructed to connect related topics. Hierarchical clustering has
been studied extensively in information retrieval [49, 36] and data
mining [19]. Our method of building multi-resolution topic maps
can be regarded as an extension of hierarchical clustering to make
the topics in the same level have similar granularities and create
meaningful horizontal links.

Faceted hierarchies [16, 50] is an extension of traditional hierar-
chies to support browsing. They contain multiple hierarchies along



different dimensions and have been used in commercial Websites
and digital libraries [38, 25]. Most of the current facets are built
manually and designed specifically for a well-understood domain.
Automatically constructing faceted hierarchies is admitted to be a
very challenging task [16]. Some work such as [36, 11] tries to
automatically extract facet terms in a text database with certain
progress. With the same goal of supporting browsing, our topic
maps are constructed automatically based on search logs which
are naturally available and can sustain continuous revision and im-
provement of the topic map.

While hierarchy and faceted hierarchies are generally used to
support a user to explore inside the search results. Our topic maps
can enable a user to horizontally navigate to neighbor areas which
is outside of the current search results.

Search Log Mining. Search logs have been exploited for several
different purposes such as query clustering [45, 4, 37], personalized
search [39], learning to rank [32, 1], and query suggestion [23, 34,
43]. Post-search browsing logs are studied in [47, 6] to identify
relevant pages for queries. Community-based search logs are used
in [40, 17] for social search and navigation. The difference of our
work from the previous work mainly lies in our attempt to charac-
terize the global structure of users’ information footprints and use
the topic map structure to better support browsing so that users can
navigate into remotely related topics.

Search Result Organization. Our work is also related to search
result organization, which includes clustering based methods [53,
52, 42, 21], categorization based methods [8, 13], and faceted hier-
archy based methods [20, 16]. All the work in search result organi-
zation is to help users navigate inside the current search results. A
major difference of our work is that we help users navigate outside
the search results to explore remotely related topic regions, which
is more important for exploratory search when a user’s information
need is not well-defined.

Others. The notion of information footprints has been used in
some previous work such as [46], where footprints were also used
to build maps, trials, and annotations to help a new user for infor-
mation exploration. Our novelty lies in that we treat search logs as
footprints and propose algorithms to turn search logs into a multi-
resolution topic map to support flexible browsing in the entire in-
formation space. Some other works such as [31, 30] do not create
new ways to support browsing, but try to make the existing hyper-
links easier for users to browse. Our work is to break the limitation
of hyperlink following through more flexible browsing with a topic
map. Horizontal links has been studied for navigation in works
such as [7, 9]. They mostly rely on the contents of document col-
lections and try to build horizontal links between basic objects such
as Web pages, while we rely on users’ information footprints, i.e.,
search logs, and furthermore, we automatically construct both ver-
tical and horizontal links in multiple granularities.

3. MULTI-RESOLUTION TOPIC MAP

In this section, we formally define multi-resolution topic maps.
Suppose we have an information space consisting of a collection
of documents C'. We first define Topic Region and Topic Region
Space:

DEFINITION 1  (TOPIC REGION). A topic region T C C'isa
subset of documents that are about a topic. For example, all the
documents matching a phrase can form a topic region character-
ized by the phrase.

DEFINITION 2 (TOPIC REGION SPACE). The topic region space

S is the set of all possible topic regions defined on C. That is,
S =2

Note that for generality, we allow the topic region space to con-
tain potentially non-coherent topic regions. We now define Topic
Map.

DEFINITION 3 (TOPIC MAP). A topic map M = (V,E) is
a graph with regions as vertices (i.e., V. C S). An edge between
two topic regions means that the user can navigate from one topic
region into the other. That is, if (vi,v;) € E, then a user would be
able to navigate between v; and v;.

A topic map is to guide a user navigating in the information space
just as a geographic map can guide a traveller touring a city. As
a geographic map would show roads to connect different regions
to enable transportation, our topic map would also have semantic
connections between topic regions to enable browsing.

In any interesting application, especially an unrestricted domain
such as Web, the topic map can be quite large. How to facilitate
a user in navigating on this map would be itself a challenge. We
solve this problem by constructing a topic map with multiple reso-
lutions. The idea of multiple resolutions is again analogous to the
idea of displaying a geographic map in multiple resolutions, and it
would allow a user to get to one region from another easily on the
map. Specifically, if the user wants to visit a topic region far away
on the map, he/she can simply “zoom out” to a high-level general
topic region (e.g., sports) and quickly navigate into a quite different
(general) topic region (e.g., economy); similarly, if the user is inter-
ested in a region and wants to explore more in the region, he/she can
“zoom in” and get a detailed view of the region (e.g., from “sports”
to a set of regions such as “baseball,” “basketball,” and “football”).

We now define the multi-resolution topic map formally.

DEFINITION 4 (MULTI-RESOLUTION TOPIC MAP). A k-level
multi-resolution topic map M consists of k topic maps ordered by
resolution decreasingly, M = (M, ..., My), such that for any two
adjacent maps M; = (V;, E;) and M1 = (Vig1, Eit1), we have
a zooming relation Z C Vi X Viy1. A zooming edge (vi,v;) € Z
means v; is subsumed by v; or vj subsumes v;.

In a multi-resolution topic map, we can refine browsing into ver-
tical browsing and horizontal browsing. The zooming relation tells
us how to refocus on a map with a new resolution if the user zooms
in/out on a current map. Specifically, suppose the user is currently
visiting region v; on map M;. If the user zooms in, he/she will
see a set of “children” topic regions {vi—1|(vi—1,v;) € Z} on
map M;_1. Similarly, if the user zooms out, he/she will see a set of
“parent” topic regions {v;+1|(vi, vi+1) € Z} on map M;41. Thus,
with the zooming relation and maps of multiple resolutions, a user
can potentially navigate into remotely related topics quickly.

4. SEARCH LOG BASED TOPIC MAP

While a multi-resolution topic map can be constructed in many
ways, in this paper, we focus on studying how to construct such a
map based on search logs. Turning search logs into a topic map
to support browsing has two attractive benefits: First, since queries
and click-throughs in search logs can both be regarded as “infor-
mation footprints” left by previous users in the information space,
thus constructing such a map would enable the current users to fol-
low these footprints and leverage the “wisdom of crowds.” Second,
as new users use the map to navigate and leave more footprints, we
will be able to use the new footprints to dynamically update and
refine the topic map for the benefit of future users, thus achieving a
powerful naturally sustainable model of social surfing.

We now present a general method for constructing a topic map
to organize the information footprints in search logs. Our approach



is based on an extension of the star clustering algorithm [2], which
has a parameter to naturally control the granularity of the obtained
topic regions, thus helping attain the goal of multiple resolutions.

4.1 Representing Footprints

We use both queries and click-throughs to represent information
footprints. Our method is to generate a pseudo-document for each
query. We utilize the click-through information in search logs for
this purpose. For each query in the logs, we have all the clicked
URLs by all past users. However, only URL information would
not give meaningful representations since URLs alone are not in-
formative enough to capture the footprints accurately. To gather
rich information, we enrich each URL with additional text contents.
Specifically, given any query, we can obtain its top-ranked results
using the same search engine as the one from which we obtained
our log data, and extract the search engine snippets of the clicked
results, according to the log data. Given a query, all the snippets of
its clicked URLSs are used to generate a pseudo-document. Thus,
each pseudo-document corresponds to a unique query and the key-
words contained in the query itself can be regarded as a brief sum-
mary of the corresponding pseudo-documents. Intuitively, all these
pseudo-documents and their associated queries capture the foot-
prints in the information space and we use them to build our topic
regions through clustering techniques.

4.2 Forming Topic Regions

Let @ = {qi,...,qn} be all the queries in the search logs and
Lo = {di, ..., d, } their corresponding pseudo-documents. We use
the star clustering algorithm [2] to discover coherent topic regions.

Given Ly, star clustering starts with constructing a pairwise sim-
ilarity graph on this collection based on the vector space model in
information retrieval [35]. Then the clusters are formed by dense
subgraphs that are star-shaped. These clusters form a cover of the
similarity graph. Formally, for each of the n pseudo-documents
{di,...,d,} in the collection Lo, we compute a TF-IDF vector.
Then, for each pair of documents d; and d; (¢ # j), their similar-
ity is computed as the cosine score of their corresponding vectors.
A similarity graph G, can then be constructed using a similarity
threshold parameter o as follows. Each document d; is a vertex of
Go. If sim(ds,d;) > o, there would be an edge connecting the
corresponding two vertices. After the similarity graph G, is built,
the star clustering algorithm clusters the documents using a greedy
algorithm. We outline the star clustering algorithm in Algorithm 1.

Algorithm 1 Star clustering algorithm

1: Given a parameter o(0 < o < 1), generate a similarity graph
G, =(V,E).

2: Associate a flag I(v) = unmarked for Vv € V.

3: repeat

4:  Let u = argmaxj(y)—unmarked degree(v), i.e., u is the
unmarked vertex with the largest degree.

5:  Mark I(u) = center.

6:  Form acluster Cy, : {u}U{v : (u,v) € E} where u is the
center of the cluster.

7:  Mark I(v) = satellite if (u,v) € E.

until 7 (v) # unmarked for Vv € V.

o

In star clustering, each obtained cluster is star-shaped, which
consists of a single center and several satellites. There is only one
parameter o in the star clustering algorithm. A big o enforces that
the connected documents have high similarities, and thus the clus-
ters tend to be small. Such a small cluster corresponds a topic re-
gion with finer granularity. On the other hand, a small o will make

the clusters big and such a cluster corresponds to a topic region
with coarse granularity.

4.3 Building a Multi-Resolution Topic Map

For a multi-resolution topic map, we can build it in either a top-
down or a bottom-up manner. In this section, we adopt a bottom-up
hierarchical clustering method.

4.3.1 Generating Multi-Resolution Map Nodes

We use hierarchical star clustering to build map nodes and their
zooming relations. Let Lo be the set of individual queries. We
apply our star clustering algorithm on Lo with a high o1 values
so that we can find small but very coherent topic regions. Each
region/cluster provides a center query and all these center queries
form a set L. Recursively, we can apply star clustering on L1 with
a medium threshold o2 to generate another set of center queries
Ly. Ls can then be used to generate L3 with a small threshold o3
and etc. In our experiments, we generate a three-level topic map by
setting o1 = 0.7, 02 = 0.5, and 03 = 0.3. Recursive clustering
gives us clusters in different granularities. Since we have the same
threshold o for each level, we loosely ensure that all the topics in
the same level have similar granularities. Each cluster is a node in
our map and all clusters in L, form the set of nodes in i-th level of
our map.

4.3.2 Connecting Topic Regions for Browsing

The procedure above generates a k-level hierarchy which can
support vertical zoom in/out naturally: A cluster in a coarse granu-
larity subsumes several clusters in a finer granularity. Thus in our
map, we have vertical or zooming relations among the correspond-
ing nodes. Each cluster in different levels is a topic region which
contains a set of pseudo-documents in Lo and a set of queries.

Here we describe our methods to connect nodes/clusters in the
same level to support horizontal navigation. In the same level, each
cluster has a set of queries in ) and all these queries in the set
can be used as the content of the cluster. Intuitively, semantically
closely related clusters would have high similarities in their con-
tents. Therefore, we can build a vector representation for each clus-
ter and use cosine similarity score to measure the closeness of two
clusters. In this paper, we propose a random walk based similarity
measure which can be used to incorporate other useful information
in logs such as query sequences in user sessions.

Specifically, given two clusters C; and Cj, we would calculate
a probability P(C;|C;) to measure the probability of arriving at
cluster C; if we start a random walk from C;. The general random
walk works as follows: From Cj, we randomly walk to a query
Qv € C;. Then we randomly walk to another query QQq from Q.
The last step is another random walk from @, to a cluster C'; which
contains (),. Therefore

P(CC:) = > P(C51Qa)P(QalQu) P(Qu|Ci). (1)
QaaQb

All those probabilities can be modelled flexibly. For example, P(Q4|Qb)

can be modelled as the probability of a user reformulates queries
from Q5 to Q4. Another version of random walk is to change Q.
and @) to two terms w, and wy, respectively. Then we have a sim-
ilar formula

P(C|Ci) = > P(Cjlwa)P(walwy) Pwy|Ci).  (2)

where P(wq|ws) can be modelled as the probability of seeing wq
in a subsequent query given its previous query containing w in
user sessions. Without using any additional information, we can



assume P(wq|wy) = 1if wa = wp and 0 otherwise. Then Equa-
tion (2) can be simplified as

P(Cy|Cy) =Y P(Cylw)P(w|Cy). 3)

w

In our experiments, we use Equation 3 and estimation P(w|C;) =
(w,Cy _ _cw,Cj) .
% and P(Cj|lw) = % where c(w, C) is the count

of w appearing as a content word in cluster C.

4.3.3 Labelling Map Nodes

Each cluster generated above corresponds to a node in our topic
map. To provide effective guidance when end users navigate in our
topic map, we need to associate a meaningful label with each node.
A label should be informative enough to represent the node’s con-
tent in the corresponding cluster. Similar to [42], We use query
words to generate labels for each node in our map since query
words are more meaningful from a user’s viewpoint. In this pa-
per, we use a variant of frequent pattern algorithm to generate the
labels in a top-down manner. We start from the nodes in the high-
est level (Level 3) of our map. For each node, we take every query
in the corresponding cluster as a word sequence and find the most
frequent one (unigram) or two words (bigram) in the correspond-
ing query set as its label. For example, we can get a label “car” for
a node in Level 3. After generating labels for Level 3, we apply
the similar procedure to Level 2, but with a constraint that a word
will not be selected if it has been used by its parent node. After we
get the frequent word(s) for a node in Level 2, we append the la-
bel of the node’s parent node in Level 3 as prefix to label the node.
For example, if we get the most frequent word of a node in Level
2 as “rental” and the node’s parent’s label is “car”, then we label
the node by “car::rental”. For a node in Level 1, we use the center
queries output by the star clustering algorithm as labels.

S.  BROWSING WITH TOPIC MAPS

Once a topic map is built, we can integrate it into a regular search
engine to enhance browsing. We developed a prototype system
based on a map constructed using a sample of search logs and a
commercial search engine. Two snapshots of our system interface
are shown in Figure 1. In our system, a user has access to three op-
erators all the time: querying, viewing a map node, and navigating
in the map.

Querying. When a user submits a new query through the search
box (see Figure 1(a)), the search results from a search engine will
be shown in the right pane. At the same time, we build a “query-
extended” map by connecting the query defined topic region with
its closest map nodes in Level 1. The closeness is computed as fol-
lows: given the query, we first retrieve the top m pseudo-documents
using the standard Okapi method [33]. Each pseudo-document cor-
responds to a past query. For nodes/clusters in Level 1, we count
how many of the retrieved pseudo-documents each contains and use
these counts as the closeness measure. The closest map nodes are
then ordered accordingly and shown in the left pane of Figure 1.
Viewing a map node. When a user double clicks on a map node,
we would display the topic region corresponding to the current
node on the right pane (see Figure 1(b)). In this paper, the topic
region consists of two parts: (1) the click-throughs of all the past
queries in the current map node, and (2) the returned search results
of using the label of the current map node as a query. The content
in the right pane shows a user the most frequently visited pages for
the current node (i.e., footprints) and also the search results. The
user can thus follow the footprints of previous users or leave his/her
own footprints by examining new search results.

Navigating in the map. The left pane in our interface is to let a
user navigate in the map. When a user clicks on a map node, this
pane will be refreshed and a local view around the clicked node
will be displayed. Specifically, we show the parents, the children,
and the horizontal neighbors of the current node in focus (labelled
as “center””). A user can thus zoom into a child node, zoom out
to a parent node, or navigate into a horizontal neighbor node. In
our current implementation, the children and neighbor nodes are
ordered by Equation 3 and the parent nodes are ordered by their
size, i.e., the number of children they contain.

The three different operators provide flexibility for users to con-
duct either querying or browsing interchangeably. Navigating in
the map helps a user reach related topic regions through “semantic
roads” without needing to formulate a query.

6. EXPERIMENTS
6.1 Data Set

Our data set is a sample of search log data from Microsoft Live
Labs. In total, this log data spans 31 days from 05/01/2006 to
05/31/2006; there are 8,144,000 queries, 3,441,000 distinct queries,
and 4,649,000 distinct URLSs in the raw data.

To test our system, we separate the whole data set into two parts
according to the time: the first 2/3 data is used to simulate the his-
torical data that a search engine accumulated. We treat this log data
as footprints and build our topic map. The last 1/3 data is held out
to serve as our test cases, which will be described in detail in a later
section. In the history collection, we clean the logs by only keep-
ing those frequent, well-formatted, English queries (queries which
only contain characters ‘a’, ‘b’, ..., ‘z’, and space, and appear more
than 5 times). After cleaning, we get 169,057 unique queries in our
history collection in total. On average, each query has 3.5 distinct
clicks. For each query, we build a “pseudo-document” based on its
clicked snippets. The average length of these pseudo-documents is
68 words and the total data size of our history collection is 129MB.

6.2 Three-Level Topic Map

Based on the history collection we described above, we built a
three-level topic map according to the method we described in Sec-
tion 4. The first level has the finest granularity and the third level
has the most coarse granularity. We show a part of the nodes/clusters
in different levels in Figure 2 where each node is represented by its
label words and arrows and lines denote vertical and horizontal re-
lations, respectively. We use past queries as labels for the first-level
nodes, but we use query words instead of entire queries to label the
nodes/clusters in the second and third levels. A major reason for
doing this is that user queries tend to be very specific, so they may
not always be suitable to label clusters in a coarse granularity, and
using query words may be better. From this figure, we can see that
the nodes/clusters in the first level are relatively narrow topics such
as “alamo car rental.” On the other hand, the second and third level
clusters represent more general concepts such as “car.”” On the same
level, we have horizontal neighbors whose closeness is calculated
by random walk based similarity in Equation 3. We can see that the
closest neighbors are indeed related. For example, we can go from
“car” to “auto,” to “loan,” or to “insurance.” All these neighbors
provide useful guidance/choices for users to navigate into related
topic regions.

6.3 Effectiveness of Map-Based Browsing

It is a challenging task to evaluate our method since by nature,
browsing is interactive [48]. Following some previous works such
as [24], we evaluate our system by simulations.
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6.3.1 Experiment Design

We construct our test cases using the sessions in our held-out test
logs. The test logs consist of user sessions and in each session, a
user submitted several queries sequentially and clicked on certain
documents for each of the submitted queries. A typical scenario is
that a user first tried an initial query and clicked on certain docu-
ments. If the current results were poor or the user wanted to find
more relevant information, the user would reformulate queries sev-
eral times and click on more documents. In our experiments, we
use each session as a test case and use the clicked documents in
a session to approximate the relevant documents [22]. In a search

Formally, let {Q1, Q2, ..., Qx} be a sequence of queries that a
user tried in a session and let R be all the clicked documents for
queries {Q2, ..., Qr }. R is regarded as the additional relevant doc-
uments to the user’s information need. Note that we do not include
the clicked documents of Q1 in R because we want to simulate the
scenario of a user browsing a map to find more relevant documents
after finishing the search with the first query instead of formulat-
ing additional queries to find more relevant documents (the clicked
documents of 1 would presumably have already been seen by the
user by this point). Our experiments are designed to test how effec-
tive our guided navigation is in enabling a user to reach the docu-
ments in R only through browsing.

As expected, most sessions in our logs are not exploratory search.
Since our goal is to support exploratory search, we use several
heuristics to filter those sessions in our test cases. Each session is
required to have at least 2 different queries and at least 10 clicked
documents (including the clicks for Q1). To ensure that queries
in a session are about a coherent information need, we further re-
quire that two adjacent queries in a session should share at least
one word. After applying the above heuristics to our test data, we
obtain 76 sessions as our test cases. On average, each session has
2.22 queries and the size of R is 7.74.



To evaluate our methods, we conduct experiments to simulate a
user’s actions when the user uses our system. In particular, we sim-
ulate a one-step action where a user views one node in our map af-
ter submitting the very first query Q1. We will compare the benefit
of this navigation action in our system with a query reformulation
action of submitting a second query Q2.

We compare our methods with two baselines. Our first baseline
method (BL1) is to use Q1 to retrieve a ranked list from a search en-
gine. Our second baseline (BL2) is to use ()2 to retrieve documents
from the same search engine. We use R to evaluate the accuracy of
these two baselines. For our method, we use Q1 as input to return
a list of map nodes in Level 1 to a user. Then the user can first
examine several nodes and finally decide to view a returned node.
After the user views a node in our map, a ranked list of URLs of
previously clicked documents in the node/cluster will be presented,
as well as a list of organic search results from the search engine
(refer to Section 5). For simplicity, we rank all the clicked URLs
on the top of the search results and their rankings are decided by
the historical click frequencies (see “Click-Through” in Figure 1).
We then use R as relevant set to evaluate the returned URL lists
after the user views a map node. To simulate which node a user
will view in our map, we use 4 variants as follows.

SimuODefault: This variant is the most naive method which as-
sumes that the user will view 1st ranked map node.

SimuOBest: This variant is to assume that the user will view the
“best node” after examining the top 10 map nodes returned for Q1.
We will describe what is the best node soon.

SimulDefault: This variant is an extension of SimuODefault.
In this variant, a user single-clicks on the 1st ranked node and our
system will display a local view of the current node. The user then
examines both the 1st ranked node and its top 10 horizontal neigh-
bor nodes. The best node of these 11 nodes is finally “viewed” by
the user.

SimulBest: This variant is an extension of SimuOBest. In this
variant, a user single-clicks on the node selected in SimuOBest and
our system will display a local view of the current node. The
user then examines both this clicked node and its top 10 horizontal
neighbors. Finally the user decides to “view” the best node among
all these 11 nodes.

SimuOBest, SimulDefault, and SimulBest assume a user would
optimally choose the best node to view, where the best node is the
one whose ranked list of URLSs (in its defined topic region) have the
best P@10, evaluated based on R. These are optimal simulations
which are to show the performance upper-bound of our system.
However, given informative and accessible labels in our map, users
can probably choose the best or nearly best node to view in reality.
SimulDefault and SimulBest are extensions of SimuODefault and
SimuOBest, and are to test whether a user can get even more useful
information after more exploration.

Treating R as the relevant documents, we use P@5 (Precision at
5 documents) and P@10 (Precision at 10 documents) to evaluate
different methods. Note that P@5 and P@10 are very meaningful
measures since users usually only look at and selectively click the
top ranked results. Thus P@5 and P@10 measure the perceived
ranking accuracy.

6.3.2 Result Comparison and Analysis

In Figure 3, we compare different methods using the two pri-
mary measures. We compare the two baseline methods BL1 and
BL2 with four variants of our method. In this figure, we can see
that BL1 is very poor as expected and it means that the first query
is ineffective to retrieve additional documents. SimuODefault is a
naive method which assumes the user would view the first node.

o BL1 m BL2 g SimuODefault g Simu1Default m SimuOBest @ Simu1Best

0.25
0.2
0.15 |-
0.1
0.05
0
P@5 P@10
Figure 3: Comparison of different methods
( | #Sessions | BL1 | SimuOBest | Impr. ||
Part I (P@10 =0) 50 0 0.114 0.114
Part II (P@10 > 0) 26 0.138 0.173 0.035

Table 1: Improvement over difficult queries with respect to av-
erage P@10. Part I corresponds to those more difficult queries.

Since the first node is the most similar to the current query @1, it is
not surprising that its result is also poor. BL2 uses the second query
Q2 and the result is much better. Intuitively, this means that refor-
mulating queries can get more clicked documents. Compared with
BL2 based on P@10, our variant SimuOBest achieves a relative im-
provement of 57% and SimulBest achieves a relative improvement
of 63%. Both improvements are statistically significant according
to Wilcoxon test: p-values are 0.003 and 0.002 respectively. This
means that selectively viewing a node in our map can reach more
relevant documents than reformulating a query. This benefit mostly
comes from collaborative surfing since viewing a node would bring
the user to a topic region with all the clicked documents by previous
users when searching for similar information.

From this figure, we can also see that Simu1Default and Simu1Best
achieve better accuracy than SimuODefault and SimuOBest respec-
tively. The Wilcoxon tests show that the improvements are also
significant: p-values are 0.01 and 0.02 respectively. This means
that more relevant documents can be reached through navigating
to and viewing a neighbor node. All these confirm the benefit of
browsing with a topic map.

Difficult Query Analysis. We show the effectiveness of our
method for difficult queries. In this experiment, we use BL1 to
assess the difficulty of queries. For all the test cases, we separate
them into two parts according to their P@10 in BL1. The first part
(Part I) corresponds to the cases with P@10 = 0, which means Q)1
can not retrieve any additional documents to top 10. The second
part (Part IT) corresponds to the cases with P@10 > 0. This means
that we can retrieve at least 1 document using the original query
1. We compare the improvement of our SimuOBest over BL1 for
these two sets of test cases using P@10. Table 1 summarizes the
results. In this table, we can see that 50 test cases fall into Part I
and 26 test cases fall into Part II. For Part I, we can improve P@10
by 0.114 from O to 0.114 on average. For Part I, the improvement
is only 0.035 from 0.138 to 0.173 on average. Since the cases in
Part I are more difficult than the cases in Part II, this means that
navigation based on our topic map can help more for more difficult
queries.

History Richness. Our topic map is based on search logs. Dif-
ferent test cases have different amount of similar history informa-
tion in our logs. Our hypothesis is that a test case with richer history
information in our logs will benefit more from our topic map. To
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Figure 4: The impact of history richness.

verify this, we use ()2 to retrieve our history collection and use the
number of returned pseudo-documents as the indicator of the his-
tory richness for the test case. According to the number of returned
pseudo-documents, we separate the test cases into 4 bins. Bin 1
has 0~40 , Bin 2 has 40~80, Bin 3 has 80~120, and Bin 4 has
more than 120 returned pseudo-documents. Bin 1 corresponds to
those cases without much history while Bin 4 corresponds to those
cases having rich history. For each bin, we show the number of test
cases whose P@10’s are improved versus decreased, by compar-
ing SimuOBest with BL1. The result is shown in Figure 4. From
this figure, we can see that the percentage of improved test cases
increases along with the increase of the history richness. For exam-
ple, in Bin 4, we improve 22 and decrease 2 cases. Butin Bin 2, we
increase 8 and decrease 3. This confirms that the more history we
have, the better we can help users for browsing. More importantly,
as time goes, more and more queries will have sufficient history, so
we can improve more and more exploratory searches, resulting in a
sustainable model for effective social surfing.

7. DISCUSSIONS

A main point made in this paper is that the current search engines

would be more powerful, especially for supporting exploratory search

and helping users find hard-to-find information, if they can offer
better support for browsing through a multi-resolution topic map,
such as the one constructed based on search logs. Although our
topic map is built upon a relatively small sample of search logs,
our experiment results have clearly demonstrated the feasibility of
supporting browsing for ad-hoc queries in a general way. We also
demonstrated that queries with more history information can bene-
fit more from topic map-based browsing. This is very encouraging
since there are more search logs in the commercial search engines
that can be leveraged, and as a system is being used more, more
search logs would be naturally accumulated.

Our work raises some interesting new possibilities in advancing
the search engine technologies, which we will briefly discuss in this
section.

7.1 Multi-Faceted Browsing for Ad Hoc Queries

Although we only experimented with a topic map built based
on search logs in this paper, one can easily imagine that we can
also build a topic map in many other ways based on various data
sources. Indeed, even with search logs, we have multiple ways to
build a topic map. For example, instead of using semantic simi-
larity of queries to construct a topic map as we have done in our
experiments, we can also leverage the co-occurrence relation of
queries in a user session to build an alternative topic map where
related queries to the same task may be connected together (e.g.,
queries about “flight ticket” may be connected with those about

“car rental” even though the two sets of queries may not be similar
by contents). Yet another way to construct a multi-resolution topic
map is based on query word editing patterns [44]. In such a map,
a node corresponds to a query. All queries with the same number
of keywords belong to the same level. The children of a map node
are obtained by adding a keyword into the current query and the
neighbors of the query are obtained by substituting a keyword in
the current query.

A topic map can also be constructed by other data sources. For
example, any domain-specific ontology can also be extended to a
topic map by adding horizontal relations. We can also build a topic
map solely based on a plain document collection itself.

With multiple topic maps constructed using different criteria, a
search engine system would be able to potentially support multi-
faceted browsing for ad hoc topics, i.e., a user would be allowed to
switch between from one facet (map) to another to explore infor-
mation in an extremely flexible and powerful way.

7.2 Unify Querying and Browsing

Querying and browsing are the two most important information
seeking strategies. They are complementary, and both are needed
in a search task [51]. An important research question is thus: Can
we integrate querying and browsing in a unified formal framework?
Interestingly, as we will further discuss below, it is possible to view
querying as a special way of navigating in the information space,
thus we can integrate querying and browsing within a single unified
navigation framework.

A Formal Navigation Framework. In Section 3, we have de-
fined fopic region and topic region space. Under these definitions,
we can view querying as navigation in this space. More specifically,
after querying, a user would end up viewing a subset of documents
(i.e., search results), thus we can view this process as helping the
user navigate into the topic region consisting of the search results.
When a user repeatedly submits a query, the user would be essen-
tially visiting different topic regions defined by the queries.

When a user follows a path on a topic map, the user would also
be moving from one topic region to another, just like submitting
reformulated queries. Thus both querying and browsing can be
formalized as navigation operators defined below:

DEFINITION 5 (NAVIGATION OPERATOR). A navigation op-
erator is a function that maps one topic region to another. We use N
as the set of all navigation operators. Thatis, N = {f : S — S},
where S is topic region space.

DEFINITION 6 (QUERY NAVIGATION OPERATOR). A query
navigation operator Q(q) is defined as Q(q)(T) = T4, where q
is a query and Ty is the topic region corresponding to the search
results of using the query q. For any Ty # Ts, we have Q(q)(T1) =
Q(q)(T3). Therefore, such a definition assumes that a query nav-
igation operator returns a topic region regardless the current re-
gion. It is thus a “memoryless” navigator and we can use Q(q) to
represent T without incurring confusion.

DEFINITION 7 (BROWSING NAVIGATION OPERATOR). A brows-

ing navigation operator B(v1,v2) is defined as B(v1,v2)(v1) =
va, where (v1,v2) € E is an edge on the topic map. B(v1,v2)(v)
is undefined if v # v1. Intuitively, a browsing navigation operator
B(v1,v2) brings a user from topic region v to vs.

DEFINITION 8 (COMPATIBILITY). Two navigation operators
N; and N; are compatible if and only if one of the following three
conditions holds: (1) N; is a query navigation operator; (2) N; =
B(vi,v2) and N; = B(vz2,v3); (3) Ni = Q(q) and N; =
B(Q(q),v).



DEFINITION 9  (NAVIGATION TRACE). A navigation trace is
a sequence of navigation operators N1, Na, ..., Ny such that N;
and N;41 are compatible.

With these definitions, we can describe any user’s information
seeking process as a navigation trace. For example, if the user sub-
mits a query qi, navigates into a region 7 from the search result
region, navigates further from 74 to 7%, and finally submits another
query g2, then the process can be formally described by the naviga-
tion trace Q(q1), B(Q(q1),T1), B(T1,T2),Q(q2). The flexibil-
ity of combining multiple operators formally to describe an arbi-
trary information seeking process shows the expressiveness of our
framework. Indeed, it provides a solid theoretical basis for study-
ing many different ways to combine querying and browsing as well
as developing systems to integrate querying and browsing.

Viewing existing search engines in our navigation framework,
we see that they mostly only support query navigation operators. A
main contribution of our work is to study how to effectively support
browsing navigation operators by a good topic map.

Ranking in the navigation framework. While not explored in
this paper, ranking is another important component in our frame-
work. It is thus worth some discussion.

Ranking is important for three reasons. First, the ranking func-
tion is critical for supporting the query navigation operator as we
generally define the target topic region of a query navigation op-
erator as the top-ranked documents using the query. Second, even
when a user reaches a region through browsing, it is still desirable
to rank the documents in the region. As the user navigates from
document to document within a region, the order of unseen doc-
uments can also be dynamically ordered as in the case of implicit
feedback [39]. Third, when a user is landing on a region that is not
exactly a region on our map, we will need to leverage the ranking
function to find the closest regions on the map. A similar need also
arises when the user takes a zoom-in or zoom-out action to change
the resolution of the map, in which case a user may end up having
multiple regions to choose.

While ranking of documents has been the central research topic
in information retrieval and Web search, the navigation framework
raises some new interesting research questions related to ranking:
(1) Ranking documents within a topic region. In our framework, a
user would leave a richer interaction history which would include
not only queries, click-throughs, but also browsing actions such
as zoom in/out operations and neighborhood explorations. EXxist-
ing work in personalized search and implicit feedback has already
shown the usefulness of the existing query-based history informa-
tion [39]. It would be very interesting to study how we can incor-
porate all the navigation information to further improve a ranking
function and personalize search results. (2) Ranking topic regions.
While traditionally, ranking is mainly to order documents, in the
navigation framework, we also need to rank the topic regions of a
map. How to generalize the current document ranking functions or
design new ranking functions to perform region ranking is another
very interesting research question. Some recent work on blog feeds
has shown the promise of this research direction [15].

As a first step in studying the navigation framework, in this pa-
per, we simply reused the ranking function provided by an existing
search engine, leaving all these questions for future work.

8. CONCLUSIONS

In this paper, we study how to support flexible browsing for ex-
ploratory search. We define a novel multi-resolution topic map to
extend a hierarchy to support more flexible browsing. We propose a
novel way of exploiting and organizing search logs to enable users

to follow information footprints left by other users in the process
of information seeking, which can potentially lead to an interest-
ing sustainable model for social surfing. We also propose a gen-
eral computational method based on the star-clustering algorithm
to generate a multi-resolution topic map based on search logs. Ex-
perimental results using a sample of search logs from a commercial
search engine show that browsing through such a search-log-based
topic map is effective for supporting exploratory search.

Our work opens up many interesting new research directions as
we have already discussed in Section 7. The preliminary simulation
based experimental results are very encouraging. However, such
simulation based approaches are simplified and do not take users’
cognitive overheads into account. It would be especially interesting
to use a much larger data set of search logs to build a larger-scale
topic map and evaluate its effectiveness with a system by real user
traffic and user feedback. It is also very interesting to study how to
learn effectively from the rich interaction traces that a user leaves
when interacting with a system that supports browsing with a topic
map. For example, users’ browsing logs on the topic maps can be
further utilized to adaptively rank topic regions for a future user.
Clearly more effective implicit feedback techniques can be devel-
oped by leveraging such interaction traces. Finally, topic maps can
be constructed in multiple ways. How to design effective evaluation
methodology to compare different topic map construction methods
is an important research question.
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